
Code Authorship and Fault-proneness of Open-Source Android
Applications : An Empirical Study

John Businge
Mbarara University of Science and

Technology
P.O. Box 1410

Mbarara, Uganda
johnxu21@gmail.com

Simon Kawuma
Mbarara University of Science and

Technology
P.O. Box 1410

Mbarara, Uganda
simon.kawuma@must.ac.ug

Engineer Bainomugisha
Makerere University

P.O. Box 7106
Kampala, Uganda

baino@cis.mak.ac.ug

Foutse Khomh
SWAT Lab., École Polytechnique de

Montréal
Montréal, Canada

foutse.khomh@polymtl.ca

Evarist Nabaasa
Mbarara University of Science and

Technology
P.O. Box 1410

Mbarara, Uganda
enabaasa@must.ac.ug

ABSTRACT
Context: In recent years, many research studies have shown how
human factors play a significant role in the quality of software com-
ponents. Code authorship metrics have been introduced to establish
a chain of responsibility and simplify management when assigning
tasks in large and distributed software development teams. Re-
searchers have investigated the relationship between code author-
ship metrics and fault occurrences in software systems. However,
we have observed that these studies have only been carried on large
software systems having hundreds to thousands of contributors.
In our preliminary investigations on Android applications that are
considered to be relatively small, we observed that applications
systems are not totally owned by a single developer (as one could
expect) and that cases of no clear authorship also exist like in large
systems. To this end, we do believe that the Android applications
could face the same challenges faced by large software systems and
could also benefit from such studies.
Goal: We investigate the extent to which the findings obtained on
large software systems applies to Android applications.
Approach: Building on the designs of previous studies, we analyze
278 Android applications carefully selected from GitHub. We ex-
tract code authorship metrics from the applications and examine
the relationship between code authorship metrics and faults using
statistical modeling.
Results: Our analyses confirm most of the previous findings, i.e.,
Android applications with higher levels of code authorship among
contributors experience fewer faults.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PROMISE , November 8, 2017, Toronto, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5305-2/17/11. . . $15.00
https://doi.org/10.1145/3127005.3127009

KEYWORDS
Software faults; Minor Contributors; Major Contributors; Most
Values Contributors; Total Contributors
ACM Reference format:
John Businge, Simon Kawuma, Engineer Bainomugisha, Foutse Khomh,
and Evarist Nabaasa. 2017. Code Authorship and Fault-proneness of Open-
SourceAndroidApplications : An Empirical Study. In Proceedings of PROMISE
, Toronto, Canada, November 8, 2017, 10 pages.
https://doi.org/10.1145/3127005.3127009

1 INTRODUCTION AND MOTIVATION
In recent years, a number of studies have shown that human factors
play a significant role in software quality [2, 3, 7–9, 12, 14, 15, 19–
21]. Code authorship metrics were introduced by Bird et al. [3] to
capture developers’ contributions in large and distributed software
development teams, with the aim to establish a clear chain of re-
sponsibility (who to blame in case there is a problem) and simplify
management (to whom to assign a task or a bug-fix). Using code
authorship metrics, researchers have investigated how different
levels of developers’ activities on components affect the quality of
a software. For example, Bird et al. [3] found that a module with
weak code authorship (i.e., that is written by many minor authors)
is more likely to have faults in the future. Bird et al. used code
authorship metrics to split developers of a software component
into two distinct groups: major developers, corresponding to peo-
ple who authored more than 5% of the contributions and minor
developers who are people who authored less than 5% of the code
of the component. Greiler et al. [9] argue that a lack of clear code
authorship is likely to cause a lack of responsibility on the parts of
the code that an engineer does not own.

Although there has been some research examining the relation-
ship between code authorship metrics and the quality of software
components, all these studies have been performed on a few (maxi-
mum of ten) medium to large sized systems, that were developed
by hundreds of developers. We are not aware of any study that
investigated code authorship in small sized systems, such as mobile
applications. Yet, our preliminary analysis of Android applications,

https://doi.org/10.1145/3127005.3127009
https://doi.org/10.1145/3127005.3127009

revealed that most applications are not totally owned by a single
developer (as one could expect) and that cases of no clear author-
ship also exist like it was reported for large systems (see Bird et
al. [3]). While the findings reported by these previous works are ac-
tionable in large software systems, the role of (a lack of) clear code
authorship is still unclear for small sized systems. We do believe
that relatively small software systems like Android applications
could face similar challenges as large software systems and could
also possibly benefit from the findings of code authorship studies.
For example, Bird et al. [3] observed that high values of minor
contributors are associated with more faults in a software system.
In this paper, in the context of Android applications, we investigate
whether applications with few major contributors are more–or–less
fault-prone than applications with larger numbers of developers that
do minor contributions.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the background information. Section 3 discusses
the experimental setup of our study. Section 4 discusses the results
and findings of our study. Section 5 presents threats to the validity,
while Section 6 provides an overview of the related work. Finally,
Section 7 concludes the paper and outlines some avenues for future
work.

2 BACKGROUND & DEFINITIONS
In this section, we give a brief overview of code authorship metrics
and explain how previous studies related the metrics to software
quality.

2.1 Code Authorship Metrics and Software
Quality

Previous studies used the authorship of code changes to estimate the
code authorship of a developer for a module [3, 7, 20]. Bird et al. [3]
computed a developer’s code authorship for a module by calculating
the proportion of code changes that the developer has authored
within that module. Bird et al. showed that weakly ownedWindows
binaries where many engineers contributed small amounts of code
were more likely to be fault-prone than strongly owned Windows
binaries, for bothWindows Vista andWindows 7. Furthermore, Bird
et al. also observed that the more minor code authors contributed
to a software module, the more faults it contained. Rahman and
Devanbu [20] computed code authorship values at a finer level of
granularity, by calculating the proportion of changed lines that
each developer has authored. Rahman and Devanbu observed that
code implicated in faults were strongly associated with situations
of single developer’s contribution. Foucault et al. [7] revisited the
theory formulated by Rahman and Devanbu [20] on seven open
source software systems, using code authorship metrics proposed
by Bird et al. [3] and confirmed the existence of a relationship
between code authorship and software quality. However, they also
argue that the usefulness of code authorship metrics is debatable
since in all their studied systems, they found independent variables
to be highly collinear. The main difference between these previous
studies and our study is the size of the systems that are investigated,
i.e., large vs. small sized systems.

In our study, we use the metrics proposed by Bird et al. [3], i.e.,
we use the amount of code changes to estimate the code author-
ship of a developer for an application. Below we state four code
authorship metrics that capture the magnitude of the contribu-
tions of developers in the applications and one metric that captures
software quality. We also provide the rationale for choosing these
metrics to assess the potential relation between code authorship
and the fault-proneness of applications.

Most valued author (MVA):Thismetricmeasures the high-
est percentage of contributions that a code author has made
to a software module. If the MVA of a software project is
close to 100%, this means that one author performed almost
all the changes in that project. A high value of MVA reveals
that the software project has strong authorship while a low
value reveals that it has a shared authorship. We expect
that an increase in the value of MVA metric may result in a
decrease of the number of faults in the project.
Minor Author (Minor-A): The metric counts how many
code authors have a ratio of contributions that is lower than
a given threshold. If there are lots of minor authors, this
implicitly means that many contributions are made by minor
contributors and therefore the software project is shared
between many code authors. The work is thus fragmented
between many code authors with little knowledge of the
project they are working on, and therefore overseeing all
these contributions becomes an obstacle. We expect that an
increase in the value of the Minor-A metric may result in an
increase of the number of faults in the project.
Major Author (Major-A): The metric counts how many
code authors have a ratio of contributions that is bigger than
a given threshold. We rely on Bird et al’s. [3] analogy stating
that “too many cooks spoil the broth”. This means that if
there are lots of major authors, they all perform a significant
amount of contributions and therefore the software project
has a shared authorship which implies that coordinating
the work of developers is more difficult. We expect that an
increase in the value of the Major-A metric to result in an
increase of the number of faults in the project.
Total Authors (Total-A): This metric counts the total num-
ber of contributors that have made changes in a software
project. It examines the effect of team size on software qual-
ity. If the size of a team is too large, coordination may be
difficult, which may result in poor quality and faulty code.
Faults: This is the number of faults reported in a given
Android project.

Later in our analysis, we will build regression models to identify
the relationship between faults and code authorship metrics in the
Android applications.

3 EXPERIMENTAL SETUP
This section details the experimental setup. We also define the
research goal and questions, descriptions of how we collected the
data and how we extracted the metrics.

3.1 Goal & Research Questions
Like the study by Bird et al. [3] we also adopt the Basili’s goal
question metric approach [1] to frame our study of code authorship
and fault-proneness. Our goal is to understand the relationship be-
tween code authorship and fault-proneness in Android applications
(which are relatively small software systems). In order to reach this
goal, we ask two research questions:

RQ1:AreAndroid applicationswithhigher values ofMinor-
A associated with more faults in comparison to those with
lower values of Minor-A?

RQ2: Are Android applications with higher values of MVA
less fault-prone than applications with lower values of MVA?

To answer the two research questions, we use regression mod-
els on a dataset collected from Android open-source applications
hosted on Github. Below we present the methodology that was em-
ployed to process the dataset. We present the corpus of applications
used, as well as how we computed the different metrics used in the
models.

3.2 Data Collection and Extraction of Code
Authorship and Control Metrics

3.2.1 Data Collection. The data used in the study was carefully
extracted from GitHub using the GitHub API. The selection of the
GitHub data was based on the following criteria: First, in early
March, 2016 when we collected the data, we typed the keyword
Android applications in the GitHub search engine, which returned
about 45,000 repositories. About 40,000 of these were written in
the Java language. Because we are aware that some of the projects
on GitHub are for example written by students as assignments, we
wanted to eliminate these repositories as much as we could so as
not to pollute our results. For this reason, we carefully collected
repository names onGitHubwith a “description” containing theword
“Android application”, having at least five releases, at least three stars
and written in Java. Starring a repository allows a developer to
keep track of projects that he finds interesting as well as showing
appreciation to the repository maintainer for their work1. The
rationale for using three stars was because we wanted to get as
many applications as possible, for statistical significance.

To compute the code authorship metrics, we processed the differ-
ent JSON objects returned by the Github API. As an illustration ex-
ample, we use theAndroid application projecteglaysher/life-
counter. The Github API https://api.github.com/re
pos/eglaysher/lifecounter/commits returned a JSON
object with all the commits of this project. Each commit has got a
unique 40 character identifier called SHA. For each commit SHA,
we use the Github API, for example https://api.github.c
om/repos/eglaysher/lifecounter/commits/a8078
48a5d426aabea59dae4b355706e60228e7a which returns
a JSON object with specific commit details that include: author
details (login ID, email address, and full names), all the files that
have been modified as well as the number of lines of code (LOC) in
each file that have been modified. For each file, we summed up the
changed LOC. We thereafter summed up the changed LOC for all
the files in a commit. Additionally, for each commit, we also kept

1https://help.github.com/articles/about-stars/

track of the author details for the commits. Finally, we summed up
the changed LOC of all the commits in a project made by different
authors. We also collected other statistics like longevity, and
inactivity to help us summarize the studied projects using
descriptive statistics in Section 4.1. Longevity–is the time in-
terval in months between the application’s “first release date” to
the “last commit date” or March 06, 2016 (the last day of collection
of the application statistics on GitHub). Inactivity—The time
interval in months between the application last commit and March
06, 2016. Because we want to build meaningful models, in our data
sets we only used projects that have existed for at least one year
since we collected this data (i.e., first release dates before March 06,
2015). Using the aforementioned criteria, we retained a total of 278
applications for our study. We share our data set on-line2, to allow
the community to replicate our work.

While collecting the data from GitHub, we observed that some of
the applications received a lot of commits from certain contributors
in their first release, but no commits from these contributors later on.
This possibly means that the development of the application started
elsewhere and it was just imported into GitHub. Our reasoning is
that, the more contributors an application has after its first release,
the higher the likelihood that the application will be maintained
frequently on GitHub. To compute code authorship metrics for a
given application, we collect information about the commits of all
the developers that have contributed to the application after the first
release of the application until March, 6 2016. We also downloaded
the source files of the applications from Github and extracted the
number of Lines of source code (LOC), using the cloc3 tool.

3.2.2 NameMerging. During data collection, we discovered that
some contributors of the applications used more than one account,
which makes them appear as different contributors. To address
this issue, we performed name merging to ensure that our data
is not polluted with duplicate informations that would introduce
noise. We merged the details of two contributors into one using
the following heuristics in the order mentioned: 1) if they possess
the same login ID, 2) posses different login ID but posses
the same full names, and 3) possess both different login ID
and full names but have the same e-mail prefix.

3.2.3 Code Authorship and Control Metric Extraction. We com-
puted code authorship metric values following the definition pro-
posed by Bird et al. [3] and used by Rahman and Devanbu [20],
which consists in calculating the proportion of contribution of each
author. If Cb lines are changed on a repository rp1 in a time inter-
val t , and there are a total number ofm distinct authors, and the
number of lines contributed by author a in the time interval t isCbt ,

then the contribution ratio of a is rCa =
Cb
t

Cb . We then sort the ratios
in descending order and thereafter we sum them up as illustrated
in Equation 1. sum0.8 is the summation of the ratios starting with
the largest ratio rC1 (highest ratio) to rCn , where rCn is the first ratio
where sum0.8 ⪖ 0.8 and n ⪕m.

Bird et al. who studied large scale software systems (i.e., Win-
dows Vista and Windows 7) with nearly one hundred code authors,
used a threshold value of 5% to categorize major and minor code

2https://sites.google.com/site/coauthorship2017/dataset
3https://github.com/AlDanial/cloc

contributors (i.e., they considered an author to be a major contribu-
tor of a module if they contributed more than 5% of the code of that
module, otherwise they are considered to be a minor contributor
to the module). Since our work focuses on applications, which are
of smaller size, and have fewer developers than these Windows
projects, computed differently the threshold value used to decide
about major and minor contributors.

A threshold of 5%would be inappropriate because, for example, if
an application has two code authors with contribution ratios of 0.93
and 0.07, respectively, applying the threshold of 5% used by Bird et
al., would characterize both authors as major contributors, which
would be misleading. In our study, using the heuristics presented
in Equation 1, we label major authors if they have been categorized
in sum0.8 and minor authors in the remaining sum0.2. In terms of
thresholds values, we state that the labeling of major and minor
authors is considered at threshold–0.8. To compute the MVA metric,
we consider the author with the highest ratio. For example, if an
application has two code authors having contribution ratios of 0.93
and 0.07, the MVA value will be 0.93. However, as shown in Figure 1
(in Section 4.1), we do have cases of low MVA metric meaning that
there are cases of shared-authorship of the applications.

sum0.8 =
n∑
i=1

ri (1)

We carried out a sensitivity analysis on the experiments by vary-
ing the thresholds from 0.7, 0.75, 0.8, 0.85 and 0.9 but the results did
not yield significant differences. We decided to use the threshold of
0.8.

Also, we would like to emphasize that we computed all the
aforementioned metrics at the project level, i.e., we computed the
authorship (respectively the level of contribution) of a developer
for the whole application. A detailed explanation of this design
decision (i.e., project level vs. module level analysis) can be found
at the end of Section 3.3.

3.3 Data Collection and Extraction of Code
Quality Metrics

We used the SonarQube tool4 to extract information about faults
and security vulnerability experienced by the studied applications.
SonarQube (previously called Sonar) is an open source quality
management platform, dedicated to continuously analyze and mea-
sure technical quality, from project portfolio tomethods.SonarQube
is a popular code quality measurement tool that has gone through
a number evolutionary versions having its first version released in
2007. The tool is actively maintained on Github as of January 16,
2016 having 21,739commits, 107releases, 55contributors,
160 watches, 1,461 stars, and 566 forks5. All the statistics of
SonaQube on Github show that the tool is very popular among
developers and is actively being maintained. The SonarQube tool
analyzed the files in each application looking for faults, and re-
ported specific points in the file where a fault was observed. The
tool categorizes the identified faults into five types: blocker, critical,
major, minor, and info.

4https://www.sonarqube.org/
5https://github.com/SonarSource/sonarqube

• Blocker : A fault of this kind might make the whole applica-
tion unstable in production. For example, calling garbage
collector, not closing a socket, etc.

• Critical: A fault of this kind might lead to an unexpected
behavior in production without impacting the integrity of
the whole application. For example, NullPointerException,
badly caught exceptions.

• Major : A fault of this kind might have a substantial impact
on productivity. For example, too complex methods, package
cycles.

• Minor : A fault of this kind might have a potential but minor
impact on productivity. For example, finalizer does nothing
but call superclass finalizer.

• Info: Unknown or not yet well defined security risk which
can impact productivity.

The tool counts the number of faults reported in each file and
aggregates them to obtain the total number of faults contained in
the project. Additionally, the tool further rates the fault-proneness
of the whole application as follows: A–Zero faults, B–at least one
minor fault, C–at least one major fault, D–at least one critical fault
and E–at least one blocker fault. For our dependent variable metric,
we consider the total number of faults reported for each of the
Android application. We extracted the faults reported on the last
release of each of the studied applications.

We would like to state that our study differs slightly from the
previous studies of Foucault et al. [7] and Bird et al. [3] on the arti-
fact that was considered. While the previous studies investigate the
relationship between code authorship metrics and fault-proneness
in a module, our study investigates the relationship between code
authorship metrics and fault-proneness in a project. Software mod-
ules are units of development within a software project for example
file or package. There are two main reasons for the above stated
difference in the investigated artifact in the software system: 1) As
earlier stated, unlike in the previous studies with relatively large
software systems having hundreds of developers, it made sense ex-
tracting code authorship metrics and building module-level models.
However, since we are investigating Android applications that are
much smaller as well as having few authors, extracting code au-
thorship metrics and building for example file-level models would
not make a lot of sense. 2) Again, because of the large sizes as
well as the very few number of the software systems investigated
in the previous studies (i.e., Bird et al.–two software systems and
Foucault et al.–seven software systems), models were built for each
software system. For example, the data points of the independent
variables in the models are the number of code authorship metrics
per software module in a software system (if a software system
has 100 software modules, then 100 code authorship metrics data
points were extracted). As opposed to the way models were built
in previous studies, in this study because of the limited size and
number of authors in the Android applications, we build models
where we consider each application as a data point. Another differ-
ence with previous works concerns the faults investigated. We rely
on SonarQube to identify faults in the code of applications while
previous works extracted faults reported in bug tracking systems.

3.4 Multiple Linear Regression Models Tuning
In this section, we discuss how we build multiple linear regression
models to uncover the relationship between faults and code au-
thorship metrics. Similar to previous related works [3, 4, 14, 21, 23],
our main goal for building fault-proneness models is not to pre-
dict fault-prone applications, but to understand the relationship
between the explanatory variables and the fault-proneness of the
applications. Specifically, we use linear regression to enable us to
examine the effect of one or more code authorship metrics and
source code metrics (when controlling the other variables). In the
regression models with faults as the dependent variable, one can
observe which variables have an effect on faults, how large the
effect is, in what direction (i.e., if number of faults go up when
a metric goes up or when it goes down), and how much of the
variance in the number of failures is explained by the metrics. We
compare the amount of variance in failures explained by a model
that includes the code authorship metrics to a model that does not
include them. In the models, we use size (i.e., LOC) and complexity
metrics (Mc Cabe complexity6) as control variables.

Before building the models, we conducted a number of model
tuning and preparations in order to have model results that can be
trusted. The following are some of the diagnostics that we carried
out: First, we standardized the variables by subtracting the values
from the mean and dividing by the standard deviation. This allowed
our variables to be relatively on the same scale (which is very im-
portant since we are building models across different applications).
Second, because the interpretation of the models’ results can be
influenced by the presence of redundant variables. We checked for
redundant variables using the redun function in the rms R pack-
age [11]. However, we found that none of the explanatory variables
that survived our correlation analysis were redundant. Third, we
also removed the variables that introduced multicollinearity and
over-fitting by considering the Variance Inflation Factor (VIF). All
variables in the final models had VIFs of under 5, as guided by stan-
dard rule of thumb [17]. Fourth, for the ordinary least squares (OLS)
regression to be reliably interpreted, we had to look at normally
distribution of the residuals. Non-normality of the residuals is at-
tributable to the skewness of the variables. In our data set, variables
that are found to be skewed are log transformed to stabilize the vari-
ance and improve the model fit, whenever appropriate [17]. Fifth,
to overcome the issue of the ordering of regressors, we assess and
report the relative importance of regressors in the multiple regres-
sion model using the PMVD technique developed by Feldman [6],
which is implemented in the R package relimpo [10]. Finally, we
take special care to make sure that the most important modeling as-
sumptions of OLS regression are met, namely: 1) homoscedasticity
(by examining residual vs. fitted plots), 2) linear independence (men-
tioned above, by removing highly correlated variables according
to VIF), and 3) normality of errors (by examining normal qq plots).
In addition, we also consult the Cook’s distance vs. leverage plots
to identify any potentially overly influential outliers to examine
for validity. This resulted in the removal of six points in our data
set which improved the model fit (based on R2 value) while having
minimal effect on the estimated model coefficients (i.e., no variable
coefficients changed signs or significance).

6https://docs.sonarqube.org/display/SONAR/Metrics+-+Complexity

Table 1 – Descriptive statistics of the study variables.

Variable Mean Min 1st
Quar-
tile

Median 3rd
Quar-
tile

Max

MVA 82% 20% 66% 95% 100% 100%
Total-A 12.3 1 2 3 8 465
Minor-A 10.5 0 0.25 2 6 457
Major-A 1.8 1 1 1 2 16
faults 71.8 0 11.3 32.5 78.5 679
Complexity 2053.1 11 350.8 889.0 2397.8 20511
SizeF 5680.6 14 719.5 2194.5 5601.3 82655
SizeL 9604.6 67 1927.25 4437 10928.5 84265
Longevity 24.4 0.7 14 22.8 34.675 79.2
Inactivity 10.1 0 0.525 4.7 16.425 67.6
Cd’LOC 184160.5 15 8071 24459 95337.5 10331255

faults—Number of faults.
SizeF—Size in Lines of Code of the first release of a project.
SizeL—Size in Lines of Code of the last release of a project.
Cd’LOC—Added + Deleted LOC.

To build the models, we follow a traditional hierarchical ap-
proach where we start with a base model that contains only control
factors. In subsequent models, we add the various independent
measures associated with code authorship metrics. This modeling
approach allows us to understand the independent and relative
impact on faults, of each set of factors. In order to assess the fit of
each model, we report the percentage of variance explained by the
model (commonly referred to as the R-squared). We examine the
improvement in percentage of variance in the dependent variable
explained when we add code authorship metrics to the base model.

4 RESULTS AND DISCUSSION
In this section, we present the results of our experiments. As shall
be seen in this section, in our analysis we used a number of methods
to examine the relationship between code authorship and the fault-
proneness of applications.

4.1 Descriptive Statistics
The first step in our analysis consisted of examining various descrip-
tive statistics of the measures described earlier. Table 1 presents
the descriptive statistics of the variables used in the models as
well as other variables describing the studied applications. One can
draw a number of insights from these descriptive statistics, about
the common characteristics exhibited by the studied applications.
First, looking at the column values of the Median and Mean for the
variables Size-F and Size-L, we observe that these are small
software systems; as the values are below 10,000 LOC. Second,
looking at values of the variables Size-F and Size-L in the 3rd
Quartile column we also observe that very few applications have
a size above 10,000 LOC. Third, looking at values in the column
of the 3rd Quartile for the variables Total-A, the values of the
column Median for Major-A, and Minor-A, we observe that the
software applications considered, indeed comprise few contributors.
Although the values of code authorship metrics are low (expected
for relatively small systems), studying such a situation is still impor-
tant in the sense that there are still authors with low contributions,
hence with limited knowledge of certain parts of the applications.

Table 2 – Spearman correlation between the different variables used in the study.

Variable MVA Minor-A Major-A Total-A SizeF SizeL faults Complexity Cd’LOC
MVA 1.00 -0.33 -0.75 -0.33 -0.15 -0.22 -0.23 -0.21 -0.19
Minor-A -0.33 1.00 0.46 0.68 0.31 0.28 0.34 0.28 0.32
Major-A -0.75 0.46 1.00 0.59 0.11 0.13 0.17 0.12 0.33
Total-A -0.33 0.68 0.59 1.00 0.19 0.19 0.17 0.18 0.44
SizeF -0.15 0.31 0.11 0.19 1.00 0.78 0.43 0.80 0.10
SizeL -0.22 0.28 0.13 0.19 0.78 1.00 0.56 0.99 0.09
faults -0.23 0.34 0.17 0.17 0.43 0.56 1.00 0.54 0.19
Complexity -0.21 0.28 0.12 0.18 0.80 0.99 0.54 1.00 0.09
Cd’LOC -0.19 0.32 0.33 0.44 0.10 0.09 0.19 0.09 1.00

These low contributors could introduce regressions in the appli-
cations if they modify areas of the code for which they have little
knowledge. Fourth, comparing the values of size (SizeF and SizeL)
and Cd’LOC, gives us an indication that the applications have gone
through multiple releases along their lifetime, which reduces the
possibility that they are student class assignments and not real
products. Fifth, looking at the values of variables of Longevity
and Inactivity, we can also observe that the applications have
been in existence for a fairly good amount of months. Lastly, look-
ing at the column values of Min, 1st Quartile, Median, 3rd Quartile
and Max for all other variables apart from MVA, we observe that
the distribution of the variables is heavily rightly skewed. We con-
firmed this observation on the distribution by drawing box-plots (cf.
Figure 1) using the R software. We also observe that the values of
code authorship obtained on our studied apps at the project level is
similar to the values of code authorship reported by Greiler et al. [9]
for the files contained in the four Microsoft projects. This similarity
reinforced our decision to conduct our study at the project level
instead of component or file levels.

4.2 Correlations
Here we computed Spearman rank correlations presented in Table 2.
From the table, we observe that the metric MVA is negatively corre-
lated with most of the other metrics including the number of faults.
This implies that the more the code authorship is shared among
multiple developers of an application, the higher is the likelihood
that the application will contain faults. This observation is rein-
forced by the fact that for all the studied applications, Total-A and
Minor-A metrics are positively correlated with the number of faults
(the more people are involved in the development of an application,
the higher is the risk of faults). Looking at the individual trends
of relationships between code authorship metrics and number of
faults, we observe that Minor-A–(0.34) correlates highest with the
number of faults, followed by MVA–(-0.23), Major-A, and Total-A–
(0.17). Additionally, we also observe high correlations between code
attributes like SizeF, SizeL, and complexity with number of faults.
The high correlations of size and complexity is not surprising since
previous studies have shown that the two variables have a very
strong correlation with fault-proneness [5].

Considering the correlations of both code authorship metrics
and those of code attributes, as discussed by Bird et al. [3], it is
not clear if the increase in number of faults in the applications
is attributable to more Minor-A or to measures such as size and

20
40

60
80

10
0

MVA

0
10
0

20
0

30
0

40
0

Total_A

0
10
0

20
0

30
0

40
0

Minor_A

5
10

15

Major_A

Fig. 1 – Box plots showing the distribution of the code authorship metrics
used in the study.

complexity that are also known to be related to faults. To clear
this dilemma, we build models of multiple linear regression to
observe the effect of each metric on the number of faults when
the code authorship and code attribute metrics are used together.
Furthermore, prior research has shown that when characteristics
such as size are not considered, the omission can affect the validity
of observations made for other software metrics [5]. In the next
section, we discuss how we used regression models to overcome the
anticipated problem. Furthermore, looking at the correlations from
Table 2, we observe high correlations between number of faults
and SizeL (> 0.5). In building the models in the next section, we
decided to use SizeF instead of SizeL as the control variable since
using SizeL introduced over-fitting in the models.

Table 3 – Linear Models coefficients and the sum of squares (ANOVA) for the different variable combinations. The models include standard metrics of size and
complexity, as well as the models with code authorship metrics added. An asterisk* in column–Variance denotes that a model showed statistically significant
improvement when the additional variable was added. Significance codes: 0.000 (***), 0.001 (**), 0.01 (*), 0.05 (.), >= 0.1 ()

Model Description Variable Coeff Pr(> |t |) Sum Sq Importance Variance
Base Model

1 Base SizeF 0.049 0.473 1.258*** 29.6% 39.5%
Complexity 0.121 0.000*** 0.876*** 70.4%

Base Model + code authorship Heuristics
2 Base + MVA SizeF 0.053 0.426 1.129*** 26.9% 42.0% (+2.5%)

Complexity 0.115 0.000*** 0.777*** 63.0%
MVA -0.023 0.000*** 0.364*** 10.1%

3 Base + Total-A SizeF 0.041 0.538 1.258*** 26.5% 41.3%* (+1.8%)
Complexity 0.115 0.000*** 0.780*** 63.4%
Total-A 0.056 0.005** 0.193*** 10.1%

4 Base + Minor-A SizeF 0.033 0.619 1.258*** 23.5% 43.8%* (+4.3%)
Complexity 0.109 0.000*** 0.680*** 56.1%
Minor-A 0.056 0.000*** 0.429*** 20.4%

5 Base + Minor-A + Major-A SizeF 0.034 0.606 1.258*** 23.0% 44.0%* (+0.2%)
Complexity 0.109 0.000*** 0.679*** 55.1%
Minor-A 0.048 0.001** 0.429*** 16.9%
Major-A 0.005 0.369 0.008 5.0%

4.3 OLS Model Results
In this section, we present the results of the multivariate linear
regression analysis for the 5 models we built in our experiments.
Table 3 illustrates the results of our analysis. The table presents
the values of the different constructs in the models that we built,
which includes: 1) Model–the models comprising different variable
combinations. 2) Description–how the models were incrementally
built, 3) Variable–the different variable combinations considered in
each of themodels. 4) Coeff –the values of the regression coefficients
corresponding to each of the variables in the models. The values
of the coefficients tell us the change in the number of faults for
every unit increase in the independent variable. For example, a
value of 0.049 for the variable SizeF in Model–1 tells us that the
predicted number of faults in an application will increase by 0.049
for every increase of one LOC in SizeF. 5) Pr(> |t |)–The p −value
showing the statistical significance of that variable given all the
other variables have been entered into the model. The significant
codes indicate: (***)–p = 0.000, (**)–p = 0.01, (*)–p = 0.05, and (.)–
p = 0.1. 6) Sum Sq–Sum of Squares associated with the sources of
variance of the variables (total variance partitioned into the variance
which can be explained by the independent variables) and the
residual. The significance code for the Sum Sq, like Pr(> |t |), indicate
the variables that significantly contribute to the estimate of the
dependent variable. 7) Importance–This is the relative importance
for each of the predictors in the model provided by R relaimpo
package. For example, in Model–1, Complexity has the highest
importance in estimating the dependent variable with a value of
70.4%. 8) Variance–This measures the proportion of variance of
the dependent variable (i.e., number of faults) explained by the
regressors (i.e., code authorship and control metrics) in the model.
For example, in Model-1, the proportion of variance explained by
the regressors SizeF and Complexity is 39.5%.

Table 3, column–Variance, the asterisk* denotes cases where the
goodness-of-fit F-test indicated that the addition of variable im-
proved the model by a statistically significant degree. The value

in parenthesis indicates the percentage of increase in variance ex-
plained over the model without the added variable. For example, in
Model-5–Base + Minor-A + Major-A explains 44.0% of the variance
in the number of faults which is 0.2% more than Model-4–Base +
Minor-A which explains 43.8%. As stated in Section 3.4, our model
building followed a traditional hierarchical approach where we
started with a base model containing only control factors–SizeF
and Complexity (we refer to this model as the Base model). From
Table 3, (Model-1:Importance), the Base model shows that SizeF and
Complexity both have significant effects on the number of faults. In
addition, these metrics are able to explain 39.5% of the variance in
the number of faults in the software projects we considered. Look-
ing at the p-values of SizeF in the column–Pr(> |t |), we observe
that they are all > 0.05. This seems to suggest that SizeF do not
contribute to the model.

The reason for the insignificant contribution of SizeF in terms of
p-values is because SizeF and Complexity are highly correlated (c.f.,
Table 2). However, when considered in isolation of Complexity, the
contribution of SizeF on the number of faults is very significant.
This can also be observed from column–Importance in Table 3.
Furthermore, in order to determine the relative importance of the
code authorship metrics, one needs at least two variables in the Base
model to run the relaimpo package in R. In subsequent models
(models 2–5), we incrementally added the various independent
variables associated with the different research questions. This
modeling approach allowed us to understand the importance of
the different independent variables on the number of faults in the
applications.

RQ1:AreAndroid applicationswithhigher values ofMinor-
A associated with more faults in comparison to those with
lower values of Minor-A?

From the detailed results—Table 3, we use Model-3, Model-4 and
Model-5 to answer RQ1. InModel-3 we add themetric Total-A to the
set of predictor variables of the base model to examine the effect of
team size on fault-proneness an application. In Model-4 we add the

metric Minor-A to the set of predictor variables of the base model
to examine the effect of minor contributors on the fault-proneness
in an application. In Model-5 we add the metric Major-A to the vari-
ables inModel-4 to examine what effect the major contributors have
on the fault-proneness of an application. We compare the results
of pairs of Model-3 and Model-4 to determine if the total number
of code authors has a different effect on the number of faults than
the number of minor code authors in the studied applications. The
statistics show that the predictor Minor-A has a higher relative
importance of 20.4% compared to that of Total-A–10.1%. We also
observe that the addition of the Minor-A metric increases the vari-
ance explained by 4.3%, whereas the addition of the Total-A metric
increases the variance explained by 1.8% only. The gains shown by
Minor-A are stronger than those shown by Total-A in estimating
the number of faults in the Android applications. This indicates
that the number of minor contributors in Android applications
have a stronger effect on the fault-proneness of the applications, in
comparison to the total number of contributors. Furthermore, the
addition of Major-A in Model-5 showed smaller gains, but was still
statistically significant. We left out the results of the model Base +
Minor-A + Major-A + Total-A since this model produced VIF > 5.
Overall, the most significant contributor to the variance explained
is Minor-A, followed by Total-A, and lastly by Major-A.

Conclusion RQ1: In Section 2.1 we stated that we expected that
an increase in the values of the minor Author metric may result
in an increase of the number of faults. The modeling discussed
above has revealed that the number of minor code authors have a
strong positive relationship with the number of faults even when
controlling for classical metrics such as size and complexity. This
implies that Android applications with few major contributors are
more reliable than applications with larger numbers of contributors
where developers do minor contributions. These findings obtained
on relatively small sized open source software projects (i.e., the
applications) concur with the findings of Bird et al. [3] which were
obtained on large commercial software projects. However, while
we agree with the finding of Foucault et al. [7] (also conducted on
large open source projects) that Minor-A and Total-A metrics are
highly collinear, we differ in the conclusion that Minor-A is highly
redundant and could be ignored. As we have discussed in our results
above, we do state that although Total-A and Minor-A are collinear,
we have shown that the individual contribution of each of these
variables to the variance of the number of faults, is statistically
significant. The difference between our results and those reported
by Foucault et al. [7] could possibly be attributed to the differences
in the artifact and the experimental design used in the two studies
(i.e., module vs project level granularity).

RQ2: Are Android applications with higher values of MVA
less fault-prone than applications with lower values of MVA?

From the results presented in Table 3, we use Model-2 to address
RQ2. We observe from the table that the addition of MVA variable
in the Base model, i.e., Model-2, significantly improves the variance
explained. The added MVA metric examines the impact of the most
valuable author on the number of faults. We can also observe that
MVA has a significant relative importance of about 10.1%. This
statistic tells us that a change in the value of authorship levels in an
Android application relates to the number of faults in that Android

application. However, we also observe that the MVA metric has
a negative coefficient. This tells us that Android applications that
have a high value of MVA (i.e., less shared code authorship) are less
fault-prone than those with low values of code authorship.

Conclusion RQ2: In Section 2.1 we stated that we expect an
increase in the value of the MVA metric to result in a decrease of
the number of faults. From the discussion of the results presented
above, we can conclude that Android applications with higher
levels of code authorship are less fault-prone than applications
with lower levels of code authorship. Again, our study’s findings
concur with the findings of Bird et al. [3] which were obtained on
large commercial software projects. Regarding the work of Foucault
et al. [7] which was conducted on seven large open source projects,
our findings still disagree with their claim that the contribution of
the MVA metric seem to be incidental. Our analysis shows that the
metric MVA indeed has a relationship with faults in the applications.

From the results of RQ1 and RQ2 discussed above, we make the
following recommendations to the developers of Android applica-
tions regarding the development process:

(1) Changes made by minor contributors should be reviewed with
more scrutiny before being committed on respective Github
projects. Development teams in Android applications should
apply additional scrutiny to files authored by minor develop-
ers before these files are committed to the respective Android
projects on Github. Since Github differentiates the author
and the committer of a software change, we recommend that
before a commit is performed, the committer should request
major contributors on the project to perform an inspection
on the changes made by minor contributors.

(2) Android applications with lower levels of code authorship
should be reviewed with more scrutiny. Android application
project teams on Github can make use of the MVA metric to
scrutinize applications with low values of MVA as they may
contain many faults and hence experience many failures.

5 THREATS TO VALIDITY
Though we have sought to make sure that all our data was gathered
and linked correctly, and that our models are statistically robust,
we note some potential threats to validity.

There are construct validity threats related to our data collection
approach. In the description of the software project contributors in
Section 3, we mentioned that some projects might have been started
elsewhere, therefore GitHub does not provide the full history of
these projects. We therefore decided to extract the code authorship
metrics from GitHub in the project, by collecting only the contribu-
tions that were made after the first release of the project untilMarch,
6 2016. This design decision is likely to affect the authorship metrics
values obtained on some projects. However, since we analyzed a
large number of projects (including projects started on Github),
we believe the effect on our conclusions to be minimal. Another
construct validity threat concern our use of heuristic to merge the
names of contributors, in order to avoid polluting our data set with
duplicate informations that would introduced noise. It is possible
that some names that we merged represent different contributors.
There is also a construct validity threat related to the fact that we
considered faults on the entire projects and not at commit level. It

is possible that one/few developer(s) may be writing most of the
faulty code. Nevertheless, since we analyzed a large number of
projects from diverse domains and diverse team sizes, we believe
the effect of this skewness on our conclusions to be minimal.

There is an internal validity threat related to the tool (i.e., Sonar-
Qube) used to extract faults information, and compute size and
complexity metrics. SonarQube is a well maintained tool that is
extensively used by practitioners. However, as most static analysis
tools, it doesn’t have a 100% precision. It is possible that some of
the faults considered in this study will never be experienced either
by developers or the users of the applications.

Finally, although the observed correlations and the model results
indicate that the phenomenons are related, i.e., low authorship and
fault introduction, we cannot claim causation.

6 RELATEDWORK
As mentioned earlier, the work presented in this paper builds on
previous studies. To this end, throughout the paper we have dis-
cussed a number of studies that relate to ours. In this section, we
shall discuss other studies related to our study that we have not yet
discussed.

A number of other studies have investigated the relationship
shared between code authorship metrics and fault-proneness. Mat-
sumoto et al. [13] studied the effects of developer characteristics
on software reliability. The authors proposed developer metrics
such as the number of code churns made by each developer and the
number of developers for each module. The authors analyzed the
relationship between the number of faults and developer metrics.
The authors reported that modules touched by more developers
contained more faults.

Nagappan et al. [18] proposed a metric scheme to quantify or-
ganizational complexity, in relation to the product development
process. They conducted a case study to identify if the metrics im-
pact failure-proneness. For the organizational metrics, the number
of developers was one of the metrics. The authors found that the
precision and recall measures for identifying failure-prone binaries,
using the organizational metrics, was significantly high.

Weyuker et al. [22] investigated the impact on predictive accu-
racy of using data about the number of developers who accessed
individual code units. The authors found only moderate improve-
ments of fault prediction models that included the cumulative num-
ber of developers as prediction factor. Meneely et al. [15] studied
the effects of the number of contributors on security vulnerabilities
focusing on the Linux software system. They reported that files
with changes from nine or more developers were 16 times more
likely to have a vulnerability than files changed by fewer than nine
developers. In our study we also use the number of contributors as
one authorship metric.

Mockus et al. [16] observed two code authorship patterns in the
open source projects Apache and Mozilla. In the Apache project,
they found that almost every source code file with more than 30
changes had several contributors who authored more than 10% of
the changes. In the Mozilla project they found that code authorship
decisions were enforced by project development guidelines, which
stated that all contributions should be reviewed and approved by
the module owner. The authors investigated authorship but did

not attempted to examine the connection between the authorship
patterns and fault-proneness.

7 CONCLUSIONS
In this study, we investigated whether applications with few major
contributors are more reliable than applications larger number of
contributors where developers do minor contributions. We care-
fully selected 278 Android applications from GitHub, from which
we extracted metrics related to code authorship. We measured the
reliability of the applications using information about fault occur-
rences, i.e., the number of faults. Using statistical modeling, we
examined the relationship between code authorship metrics and
faults. We observed that Android applications with higher levels of
code authorship among contributors experience fewer faults.

We formulate the following two recommendations to develop-
ment teams of Android applications projects:

(1) Changes made by minor contributors should be reviewed
with more scrutiny before being committed.

(2) Android applications with lower levels of code authorship
should be reviewed with more scrutiny as they may contain
faults.

To generalize our findings, in the future we plan to expand this
work to investigate other relatively small sized projects in other
domains.

REFERENCES
[1] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. 1994. The Goal

Question Metric Approach. In Encyclopedia of Software Engineering. Wiley.
[2] Christian Bird, Nachiappan Nagappan, Premkumar Devanbu, Harald Gall, and

Brendan Murphy. 2009. Does Distributed Development Affect Software Quality?:
An Empirical Case Study of Windows Vista. Communication ACM 52, 8 (2009),
85–93.

[3] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and
Premkumar Devanbu. 2011. Don’T Touch My Code!: Examining the Effects
of Ownership on Software Quality. In Proceedings of the 19th ACM SIGSOFT Sym-
posium and the 13th European Conference on Foundations of Software Engineering.

[4] Marcelo Cataldo, Audris Mockus, Jeffrey A. Roberts, and James D. Herbsleb. 2009.
Software Dependencies, Work Dependencies, and Their Impact on Failures. IEEE
Transactions Software Engineering 35, 6 (Nov. 2009), 864–878.

[5] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai. 2001. The confounding effect of
class size on the validity of object-oriented metrics. IEEE Transactions on Software
Engineering 27, 7 (2001), 630–650.

[6] Barry E. Feldman. 2005. Relative Importance and Value. Available at SSRN (2005).
[7] Matthieu Foucault, Cédric Teyton, David Lo, Xavier Blanc, and Jean-Rémy Falleri.

2015. On the Usefulness of Ownership Metrics in Open-source Software Projects.
Inf. Softw. Tech. 64, C (Aug. 2015), 102–112.

[8] Thomas Fritz, Gail C. Murphy, and Emily Hill. 2007. Does a Programmer’s
Activity Indicate Knowledge of Code?. In Pro. of the 6th Joint Meeting of the
European Soft. Eng. Conf. and ACM SIGSOFT Symposium on The Foundations of
Software Engineering.

[9] Michaela Greiler, Kim Herzig, and Jacek Czerwonka. 2015. Code Ownership and
Software Quality: A Replication Study. In Pro. of the 12th Working Conference on
Mining Software Repositories.

[10] Ulrike Grömping. 2006. Relative Importance for Linear Regression in R: The
Package relaimpo. Journal of Statistical Software 17, 1 (2006), 1–27.

[11] F. E. Harrell Jr. 2015. Regression Modeling Strategies.
[12] Oleksii Kononenko, Olga Baysal, Latifa Guerrouj, Yaxin Cao, and Michael W.

Godfrey. 2015. Investigating Code Review Quality: Do People and Participation
Matter?. In Proceedings of International Conference on Software Maintenance and
Evolution.

[13] Shinsuke Matsumoto, Yasutaka Kamei, Akito Monden, Ken-ichi Matsumoto, and
Masahide Nakamura. 2010. An Analysis of Developer Metrics for Fault Prediction.
In Proeedings of the 6th International Conference on Predictive Models in Software
Engineering.

[14] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. 2016.
An empirical study of the impact of modern code review practices on software
quality. Empirical Software Engineering 21, 5 (2016), 2146–2189.

[15] Andrew Meneely and Laurie Williams. 2009. Secure Open Source Collaboration:
An Empirical Study of Linus’ Law. In Proceedings of the 16th ACM Conference on
Computer and Communications Security.

[16] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. 2002. Two Case Studies
of Open Source Software Development: Apache and Mozilla. ACM Trans. Softw.
Eng. Methodol. 11, 3 (July 2002), 309–346.

[17] Christopher J Nachtsheim, John Neter, Michael H Kutner, and William Wasser-
man. 2004. Applied linear regression models. McGraw-Hill Irwin (2004).

[18] Nachiappan Nagappan, Brendan Murphy, and Victor Basili. 2008. The Influence
of Organizational Structure on Software Quality: An Empirical Case Study. In
Pro. of the 30th Int. Conf. on Software Engineering.

[19] Martin Pinzger, Nachiappan Nagappan, and Brendan Murphy. 2008. Can
Developer-module Networks Predict Failures?. In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of Software Engineering.

[20] Foyzur Rahman and Premkumar Devanbu. 2011. Ownership, Experience and
Defects: A Fine-grained Study of Authorship. In Pro. of the 33rd International
Conference on Software Engineering.

[21] Patanamon Thongtanunam, Shane McIntosh, Ahmed E. Hassan, and Hajimu Iida.
2016. Revisiting code ownership and its relationship with software quality in
the scope of modern code review. In Pro. of the 38th International Conference on
Software Engineering.

[22] Elaine J. Weyuker, Thomas J. Ostrand, and Robert M. Bell. 2008. Do too many
cooks spoil the broth? Using the number of developers to enhance defect predic-
tion models. Empirical Software Engineering 13 (2008), 539–559.

[23] Thomas Zimmermann, Nachiappan Nagappan, Philip J. Guo, and Brendan Mur-
phy. 2012. Characterizing and Predicting Which Bugs Get Reopened. In Proceed-
ings of the 34th International Conference on Software Engineering.

10

	Abstract
	1 Introduction and Motivation
	2 Background & Definitions
	2.1 Code Authorship Metrics and Software Quality

	3 Experimental Setup
	3.1 Goal & Research Questions
	3.2 Data Collection and Extraction of Code Authorship and Control Metrics
	3.3 Data Collection and Extraction of Code Quality Metrics
	3.4 Multiple Linear Regression Models Tuning

	4 Results And Discussion
	4.1 Descriptive Statistics
	4.2 Correlations
	4.3 OLS Model Results

	5 Threats to Validity
	6 Related Work
	7 Conclusions
	References

