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Neonatal sepsis is a significant cause of neonatal death and has been a major challenge worldwide. 23 

The difficulty in early diagnosis of neonatal sepsis leads to delay in treatment. The early diagnosis 24 

of neonatal sepsis has been predicted to improve neonatal outcomes. The use of machine learning 25 

techniques with the relevant screening parameters provides new ways of understanding neonatal 26 

sepsis and having possible solutions to tackle the challenges it presents. This work proposes an 27 

algorithm for predicting neonatal sepsis using electronic medical record (EMR) data from Mbarara 28 

Regional Referral Hospital (MRRH) that can improve the early recognition and treatment of sepsis 29 

in neonates. 30 

Methods 31 

 A retrospective analysis was performed on datasets composed of de-identified electronic medical 32 

records collected between 2015 to 2019. The dataset contains records of 482 neonates hospitalized 33 

in Mbarara Regional Referral Hospital, Uganda. The proposed algorithm implements Support 34 

Vector Machine (SVM), Logistic regression (LR), K-nearest neighbor (KNN), Naïve Bayes (NB), 35 

and Decision tree (DT) algorithms, which were trained, tested, and compared based on the acquired 36 

data. The performance of the proposed algorithm was evaluated by comparing it with the 37 

physician's diagnosis. The experiment used a Stratified K-fold cross-validation technique to 38 

evaluate the performance of the models. Statistical significance of the experimental results was 39 

carried out using the Wilcoxon Signed-Rank Test.  40 

Results 41 

The results of this study show that the proposed algorithm (with the lowest Sensitivity of 0.95, 42 

lowest Specificity of 0.95) outperformed the physician diagnosis (Sensitivity = 0.89, Specificity = 43 

0.11). SVM model with radial basis function, polynomial kernels, and DT model (with the highest 44 
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AUROC values of 0.98) performed better than the other models in predicting neonatal sepsis as 45 

their results were statistically significant. 46 

Conclusions 47 

The study provides evidence that the combination of maternal risk factors, neonatal clinical signs, 48 

and laboratory tests effectively diagnose neonatal sepsis. Based on the study result, the proposed 49 

algorithm can help identify neonatal sepsis cases as it exceeded clinicians' sensitivity and 50 

specificity. A prospective study is warranted to test the algorithm's clinical utility, which could 51 

provide a decision support aid to clinicians. 52 

 53 

Keywords: Neonatal sepsis prediction, Screening parameters, Predictive algorithm, Supervised 54 

Machine Learning, Electronic medical record (EMR), Cross-Industry Standard Process for Data 55 

Mining (CRISP-DM) model. 56 

 57 

Background 58 

About 2.5 million neonates die worldwide every year, and most of these deaths occur in low-59 

resource settings (1,2). It is estimated that the neonatal mortality rate (NMR) in Sub-Saharan 60 

Africa (SSA) is 28 per 1000 live births, with Uganda struggling with a high rate of 20 per 1000 61 

live births (1,3). The pediatric consensus definition of sepsis is systemic inflammatory response 62 

syndrome (SIRS) in the presence of or due to suspected or proven infection (4). The SIRS cause 63 

damage to the body and can quickly advance to severe sepsis, multi-organ system failure, and 64 

death (5,6). Therefore, early recognition and prompt treatment, which have been predicted to 65 

improve clinical management of sepsis, is required to reduce the morbidity and mortality of 66 

neonatal sepsis (7–11). 67 
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Neonatal sepsis is a significant cause of neonatal mortality and morbidity worldwide (12–14), and 68 

a majority of the morbidity and mortality from sepsis is preventable. Sepsis is one of the major 69 

causes of neonatal deaths in Uganda, like in other Sub-Saharan African countries, accounting for 70 

17% of neonatal deaths in Uganda (15). Several authors classify neonatal sepsis as a community-71 

and hospital-acquired instead of early-and late-onset in developing countries. Neonatal sepsis is 72 

usually classified as early-onset (<48–72h) and late-onset sepsis (>48–72h), depending on the age 73 

at onset (16,17). About 30-50% of survivors of neonatal sepsis end up with major long-term 74 

impairments and also faced with prolonged hospitalization, chronic lung disease, and 75 

neurodevelopmental disabilities (18–21). Recent data highlight the costs and burdens of sepsis, as 76 

it remains the most expensive cause of hospitalization (22–25). The development of clinical trials 77 

and global recommendations is hindered by the population's susceptibility, lack of consensus in 78 

definitions, and variability between regions (26). Multiple challenges in diagnostic and treatment 79 

decisions are faced by physicians caring for infected neonates. To date, there have been just modest 80 

improvements in terms of sepsis outcomes in neonates despite the increased understanding of its 81 

pathophysiology and efforts to improve clinical decision support in intensive care (27). The after-82 

effect of sepsis-infected adults and children's impending intervention is receiving attention in 83 

recent studies (28,29).  84 

Despite the explored significance of early treatment of sepsis, there are still unresolved challenges 85 

due to impeding recognition and intervention of sepsis (14,27,30–34). Neonates have a non-86 

specific clinical presentation that overlaps with other neonatal disease processes. Also, laboratory 87 

tests have suboptimal diagnostic accuracy, which makes a rapid diagnosis of neonatal sepsis 88 

difficult. The blood culture, the standard gold test for neonatal sepsis diagnosis, faces the challenge 89 

of insufficient blood volume for blood culture and a low amount of invading microorganisms in 90 
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the blood; this usually generates false-negative results (21,35). Despite negative culture results, 91 

neonates presumed to have sepsis are kept on a longtime antibiotic treatment. Studies have 92 

previously applied machine learning and statistical modeling techniques to tackle the problems 93 

related to sepsis recognition and intervention (36–39).  94 

Several studies have used machine learning models to predict if a patient is at risk of developing 95 

sepsis or the onset time (36,38,40–42). Electronic health record (EHR) data have been used in 96 

recent studies to train models to enable early diagnosis of neonatal sepsis (21). HeRO score, which 97 

is a statistical prediction model, supported early recognition of neonatal sepsis as it was used to 98 

lessen deaths related to sepsis in very low birth weight neonates (<1500 grams) (43). However, in 99 

a retrospective study with a larger population, the HeRO score could not identify neonates with 100 

sepsis. Suggesting that the predictive value is unreliable in clinical practice (44). In recent research, 101 

a machine learning model was developed using electronic health record data to recognize early 102 

neonatal sepsis in the neonatal intensive care unit. Though the model could predict neonatal sepsis, 103 

additional features are still required to improve its performance (21). This resulted from the 104 

uncertainty of the adequate screening parameters for the diagnosis of neonatal sepsis. Research 105 

that was carried out in India aimed at comparing the neonatal sepsis rapid diagnostic tests with 106 

blood culture for specificity and sensitivity. The study pointed out that the use of either two tests 107 

or three tests can rule out negative sepsis cases, which will help avoid antibiotics' overuse (35). In 108 

another research, the authors focused on assessing the performance of the Adult Sepsis Pathway 109 

and algorithm for the Modified St. John Rule, which were compared with qSOFA score algorithm 110 

using R scripts (45). Although this work identified algorithms that performed more than qSOFA, 111 

adults and children's immunology and physiology differ significantly that these algorithms may 112 

not be directly applicable to neonates. Hence, this study seeks to address the difficulty in early 113 
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diagnosis of neonatal sepsis by developing an algorithm that combines maternal risk factors, 114 

neonatal clinical signs, and laboratory tests. 115 

 116 

Methods 117 

A Standard approach was implemented, a structured data mining project methodology defined by 118 

the Cross-Industry Standard Process for Data Mining (CRISP-DM) developed in 1996 (46,47). 119 

The experiment was executed in five phases, which include; business understanding, data 120 

understanding, data preparation, modeling, and evaluation. The experimental steps were 121 

performed in Python language using scikit-learn library. Scikit-learn (48) is an open-source 122 

machine learning library featuring various classification, regression, and clustering algorithms for 123 

the python programming language. This research aims to propose an algorithm that can improve 124 

the early recognition and treatment of sepsis in neonates using EMR data collected over a time 125 

span of four years.  126 

 127 

Figure 1: CRISP-data mining process model (47) 128 



7 

 

This chapter is categorized into sub-sections adhering to the CRISP-DM framework, as shown in 129 

figure 1 above. The phases are performed based on the previous phase's accomplishments, and the 130 

subsections provide detailed information on the experiment. 131 

Business Understanding 132 

 133 

Figure 2: Design of the research experiment 134 

This study is a retrospective study, and the key focus of the study is to propose an algorithm that 135 

can improve the early recognition and treatment of sepsis in neonates. The design of the study is 136 

shown in figure 2 above. 137 

Data Understanding 138 

Secondary data was used in this study, based on the data reliability, suitability, and adequacy of 139 

the data. The dataset contains information about sepsis screening parameters from hospitalized 140 

neonates collected from the EMR of MRRH that covers a period of 4 years. The Mbarara Regional 141 
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Referral Hospital is located in rural Uganda and is the main teaching hospital situated adjacent to 142 

the Mbarara University of Science and Technology campus. The hospital typically has about 143 

21.3% cases of presumed neonatal sepsis per the pediatric ward's annual admissions, as it is the 144 

referral center for southwestern Uganda. A data abstraction tool was developed (see supplementary 145 

table 1) to retrieve information essential to the study. The dataset contains records of 482 neonates 146 

hospitalized from October 1st, 2015 to September 30th, 2019, that met the inclusion criteria with 147 

38 different neonate screening features (Table 1). The category of neonates of concern is the group 148 

with early-onset sepsis (≤48-72h). The predictor variables are both continuous and categorical in 149 

nature.  150 

The neonatal data experiment was performed using Python code, which includes the following 151 

steps: 152 

1. Statistical analysis: This step involves determining basic statistics for analysis such as 153 

distribution, mean, median, mode, max, min, standard deviation, normalization, and 154 

the skewness of features. 155 

2. Missing value analysis: This step involves calculating the count and percent count of 156 

the target variable's missing values and features. 157 

3. Outlier analysis: This step was used to find out the values lying out of range, e.g., 158 

weight. 159 

4. Exploratory data analysis: This step involves the plots of the frequency distribution of 160 

numeric and categorical features with respect to the target variable. 161 

5. Heatmap correlation matrix: This step involves using a heatmap matrix to analyze the 162 

correlation between the target variable (neonatal sepsis) with the features. A separate 163 
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plot is generated to identify whether the features are positively or negatively correlated 164 

with the target variable. 165 

Table 1: Screening parameters information 166 

Variable  Attributes Type Description 

Maternal risk 

factors 

maternal_febrile  N Maternal febrile episodes during 

pregnancy (Count) 

fever_during_labour C Fever during labor 

abnormal_vaginal_discharge C Abnormal vaginal discharge during 

pregnancy 

Antibiotic C Any antibiotic therapy received by mother 

in perinatal period 

gest_age  N Gestation age at birth (weeks) 

place_of_delivery  C Place of delivery 

mode_of_delivery  C Mode of delivery 

duration_of_labour  N Duration of labor 

duration_of_ROM N Duration from rupture of membranes to 

delivery of baby 

Neonatal signs gender  C Female, Male 

age_days N 0-3 days old 

fever  C Fever 

cold_body  C Cold body 

poor_feeding  C Poor feeding 

crying_excessively  C Crying excessively 
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weak_cry  C Weak cry 

lethargy  C Lethargy 

respiratory_difficulty C Respiratory difficulty 

weight  N Weight 

temperature  N Temperature 

respiratory_rate  N Respiratory rate 

heart_rate N Heartrate 

tachypnoea  C Tachypnoea 

apnoea  C Apnea 

Laboratory tests wbc  N White blood cells 

neu_count N Neutrophils  

lym_count N Lymphocytes  

mon_count N Monocytes  

eos_count N Eosinophils  

bas_count N Basophils  

Rbc N Red Blood Cells  

platelet_count  N Platelets 

crp_count  C C-reactive protein 

blood_culture C Blood culture 

 167 

Table 1 above contains the summary of the dataset, where attributes are the screening parameters, 168 

and type represents the data type of each parameter, i.e., 'N' for numeric values and 'C' for 169 

categorical values. 170 
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Inclusion Criteria 171 

The EMR data from MRRH was used base on the following conditions:  172 

 Have gestational age (GA) of ≥37 weeks. 173 

 Data of each neonate should have at least two observations from each of these variables;  174 

o Maternal risk factors (fever during labor, maternal febrile during pregnancy, 175 

duration of rupture of membrane, duration of labor, foul odor of the amniotic fluid, 176 

and antibiotic treatment received by mother ≤4 hours prior to delivery). 177 

o Neonatal clinical signs (heart rate, temperature, respiratory distress, apnea 178 

condition, lethargy condition, and feeding difficulty). 179 

o Laboratory tests (C-reactive protein, white blood cell count, neutrophil count, and 180 

platelet count). 181 

 Availability of a defined neonatal sepsis status report. 182 

 The age at the time of onset should be less than or equal to 48-72h. 183 

Exclusion Criteria 184 

Excluded cases include: 185 

 Bacteria cultures were positive from sources other than blood. 186 

 Positive cultures for viral or fungal pathogens. 187 

 Undefined results due to pending cultures at the time of data extraction. 188 

 Cultures positive for known contaminants. 189 

A detailed overview of the steps carried out for data preparation and feature engineering used in 190 

this study is provided in the following section. 191 
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Data Preparation 192 

The data preparation phase covers every activity involved in transforming and cleaning the data to 193 

make it fit to be used in the modeling phase. The missing values, noise, and outliers present in the 194 

data identified during the data understanding phase were removed in data pre-processing. The 195 

identified missing values were assigned using the mean value of the feature. 196 

SMOTE Algorithm - Balancing of Dataset 197 

The main problem with the data is that it is highly imbalanced and small in size. There were 198 

approximately 22% records with neonatal sepsis as ‘0’, and the rest 78% of the records have 199 

neonatal sepsis as ‘1’. Proceeding to modelling without balancing the data will cause the trained 200 

model to be biased and have a high cost of misclassifying minority class.  201 

 202 

Figure 3: Sampling for Imbalanced data (49)  203 

Sampling techniques such as under-sampling or over-sampling, should be implemented to balance 204 

the data set, as shown in figure 3 above. 205 
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Looking at the fact that the data set is relatively small in size, this makes all the instances to be 206 

highly important, and no information should be at the risk of loss. Therefore, under-sampling is 207 

eliminated, and the over-sampling technique will be preferable for the experiment.  208 

 209 

Figure 4: SMOTE algorithm KNN approach (49) 210 

The synthetic samples are created in the space, as shown in figure 4 by Synthetic Minority Over-211 

sampling Technique (SMOTE) algorithm, which applies the KNN approach where it selects K-212 

nearest Neighbors and joins them. The algorithm takes the feature vectors and its nearest 213 

neighbors, and it computes the distance between these vectors. A random number between (0, 1) 214 

is used to multiply the difference, and it is added back to the feature. 215 

Normalization and Standardization: Z-score 216 

Unscaled or unstandardized features are known to make the learning algorithms to predict 217 

recklessly. Normalization or standardization, an important step to be carried out before proceeding 218 

to model building, is required to ensure that all the feature values are on the same scale. The values 219 

of features are standardized from different dynamic ranges into specific ranges through 220 
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standardization, a preprocessing step. All the parameters are scaled to have zero mean and unit 221 

variance, converted by standard score, also known as z-score. 222 

Equation 1: Z-score which is given as; 223 

𝑧𝑖 =  𝑥𝑖 − 𝑥̅𝑠  224 𝑥̅ is the sample mean  225 

s is the sample standard deviation 226 

 227 

Figure 5: Normal distribution (Bell curve) 228 

Z-scores, which range from -3 standard deviations to +3 standard deviations, can be placed on a 229 

normal distribution curve, as shown in figure 5 above. 230 

One-Hot Encoding: Categorical Variables 231 

The neonatal sepsis data set has 21 categorical variables out of 38 features. In order to build the 232 

SVM model, categorical variables need to be converted into numeric variables as vector machine 233 

works on numeric variables. This problem was overcome by constructing a dummy variable from 234 

the categorical variables using the Pandas library in python. 235 

Random Forest Classifier: Feature Importance 236 

Finally, each variable's importance in predicting neonatal sepsis was identified with the Random 237 

Forest algorithm, an ensemble modeling technique based on iteratively removing variables with 238 
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low ranking and using cross-validation to assess the learning performance. Each variable was 239 

assigned a score to show the importance of the variables in the model. The higher the score, the 240 

higher the importance of that particular variable. While variables with a lower score are considered 241 

the least important. Data pre-processing techniques assist in extracting more useful information, 242 

which helps build a model with higher accuracy and performance. 243 

Modelling 244 

The study developed a diagnostic algorithm for predicting neonatal sepsis, which was used to train 245 

the machine learning (ML) algorithms used in this study. Therefore, five supervised ML 246 

algorithms, Support Vector Machine (SVM), Logistic regression (LR), K-nearest neighbor (KNN), 247 

Naïve Bayes (NB), and Decision tree (DT), were implemented to build the models. SVM is a 248 

relatively new classification method that resulted from the collaboration between statistical and 249 

machine learning developed by Vapnik et al. in the 1990s (50), whereas the most commonly used 250 

prognostic modeling method is LR. The KNN algorithm is used for classification and regression, 251 

and it is a non-parametric method. The NB is a probabilistic classifier that performs well in multi-252 

class prediction. Furthermore, DT builds classification or regression models in the form of a tree 253 

structure.  254 

SVM, which is also a supervised machine learning technique, is similar to LR, and they are both 255 

used for regression and classification problems. The dissimilarity is that SVM models input 256 

variables by finding a boundary for the classification of the target variable known as hyper-plane. 257 

When the hyper-plane has data points nearest to it, the data points are called support vectors. The 258 

removal of these points will lead to the alteration of the dividing hyperplane as they are the data 259 

set's critical elements. SVM functions for both regression and classification, respectively.  260 
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 261 

Figure 6: Classification by Support Vector Machine (51)  262 

SVM algorithms find boundaries for classification when there is no possible separation within a 263 

high number of input variables, as shown in figure 6 above. The input variables are transformed 264 

by increasing the dimensionality of the variable space to generate the separation boundary. 265 

The SVM Linear kernel model, SVM radial kernel model, and SVM polynomial kernel model 266 

were built as part of the experiment.  Each model is tuned with different values of tuning parameter 267 

'C' and 'γ'. SVM model separates classes that cannot be separated using line or plane but only using 268 

kernel function and requires a non-linear region to separate such classes. This transformation of 269 

the data into higher dimensional feature space to separate it linearly is known as the kernel trick. 270 

Evaluation 271 

In order to ascertain the performance of the proposed algorithm for this experiment, two steps were 272 

used. Firstly, a stratified K-fold cross-validation technique was used for the validation of the 273 

trained ML algorithms. In this validation technique, the folds are selected in a way that each class 274 

labels in each fold are equally distributed. The target variable is binary; therefore, each fold 275 

contains roughly the same proportions of the two types of class labels. The data set was split into 276 

k subsets where k =10, and each time one of these k subsets was used as the test set, and the k-1 277 
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subsets were used as a training set. This way, all data points are part of the test set exactly once 278 

and also gets to be in training set k-1 times. Single estimation was produced by taking the average 279 

results from the k folds. The algorithm takes time for training, which is the only disadvantage of 280 

using k-fold cross-validation.  281 

 282 

Figure 7: Stratified 5-fold cross validation technique (52)  283 

In experiments, the ideal standard value used is k=10. The training and test split in 5-fold cross-284 

validation is shown in figure 7 above: 285 

Secondly, the performance of the proposed algorithm was compared with the physician's 286 

diagnosis. In order to achieve this, the sensitivity and specificity of the models were compared 287 

with that of the physician. By using the sepsis labels and blood culture information, the physician 288 

diagnosis matrix was created by assigning each of the 482 neonates to the appropriate cell in the 289 

2×2 matrix. Table 12 below shows the physician diagnosis matrices for the study samples. To 290 

compare the proposed algorithm performance to the physician, first, the ML algorithms 291 

performance measures were generated such that their sensitivities and specificities are the same as 292 



18 

 

that of the physician. This allowed us to deduce whether the proposed algorithm performs better 293 

or worse than the physician's diagnosis. Statistical significance of the experimental results was 294 

carried out using the Wilcoxon Signed-Rank Test.  295 

The performance of the models was compared based on the accuracy obtained in the prediction of 296 

neonatal sepsis. In each fold, the model's accuracy was computed, which gives 10 accuracies per 297 

model. 298 

Equation 2: The accuracy of the model which is given as; 299 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 300 

where, 301 

TP (True Positive); positive instances that are classified as positive, 302 

FP (False Positive); negative instances that are classified as positive, 303 

FN (False Negative); positive instances that are classified as negative, 304 

TN (True Negative); negative instances that are classified as negative. 305 

Also, the evaluation parameters were obtained, such as average classification accuracy, receiver 306 

operation curve (ROC) (51), and area under the curve (AUC) (53). The mean accuracy of each 307 

model was visualized by generating the ROC-AUC plot of each model. The ROC curve consists 308 

of two metrics, True Positive Rate (TPR) and False Positive Rate (FPR). 309 

True positive rate (TPR), also known as sensitivity, hit rate, or recall. 310 

Equation 3: Sensitivity, hit rate or recall, is defined as; 311 

𝑇𝑃𝑅 =  𝑇𝑃𝑇𝑃 + 𝐹𝑁 312 
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This metric correlates with the proportion of positive data points that are correctly considered 313 

positive with respect to all positive data points. In a simple term, it means the higher the TPR, the 314 

fewer the positive data points that are missed. 315 

False-positive rate (FPR) or fall-out is defined as 316 

Equation 4: False positive rate (FPR) or fall-out is defined as; 317 

𝐹𝑃𝑅 =  𝐹𝑃𝐹𝑃 + 𝑇𝑁 318 

Equation 5: This metric can also be generated from specificity as; 319 𝐹𝑃𝑅 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 320 

Equation 6: Where specificity is defined as; 321 

𝐹𝑃𝑅 =  𝑇𝑁𝑇𝑁 + 𝐹𝑃 322 

 323 

This metric correlates with the proportion of negative data points that are mistakenly considered 324 

positive with respect to all negative data points. In a simple term, it means the higher the FPR, the 325 

more the negative data points that are misclassified. 326 

 327 
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Figure 8: ROC-AUC curve (Thomas, 2001) 328 

In order to generate AUC, FPR and TPR will be combined into one metric, where a single graph 329 

is plotted with the values of FPR on the x-axis and the values of TPR on the y-axis. The derived 330 

curve is called AUROC, as shown in figure 8 above. 331 

Table 2: Confusion Matrix 332 

 Actual Positive Actual Negative 

Predicted Positive TP FP 

Predicted Negative FN TN 

 333 

Another evaluation metric used to describe a classifier's performance is the confusion matrix, 334 

which involves calculating evaluation parameters and is shown in table 2 above. The confusion 335 

matrix is used to generate the values of true positive rate and false-positive rate. 336 

Comparing the models will help determine the performance difference between the models in 337 

terms of classification accuracy.  338 

Summary of Design 339 

This chapter is committed to providing the breakdown of the experiment that was carried out for 340 

the dissertation. This chapter begins with a short explanation of the dataset, including the variable 341 

types and data source. One of the principal interests is the issues present in the raw data. Hence, 342 

data pre-processing machine learning techniques for cleaning and normalizing the data made the 343 

data fit for the modeling phase. These data pre-processing techniques include SMOTE algorithm 344 

for balancing dataset, Z-score for standardization of data, and One-hot encoding for generating 345 

dummy variables. 346 
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Furthermore, seven supervised machine learning algorithms, SVM with linear kernel, SVM with 347 

the radial kernel, and SVM with polynomial kernels, LR, KNN, NB, and DT, were trained. The 348 

chapter ends with the evaluation of the proposed algorithm.  349 

The next chapter details the results of the study design and experiment. 350 

 351 

Results 352 

Data Understanding 353 

Table 3: Statistical Description of data 354 

S/

No

. 

Parameters Count  Mean Standa

rd 

Deviati

on 

Mini

mum 

25% 50% 75% Maxim

um 

1 age_days 482.00

0000 

1.7468

88 

0.6991

54 

0.000

000 

1.0000

00 

2.0000

00 

2.0000

00 

3.0000

00 

2 gest_age 482.00

0000 

39.595

643 

1.7472

41 

37.00

0000 

38.000

000 

39.000

000 

41.000

000 

41.000

000 

3 duration_of

_labour 

422.00

0000 

19.594

787 

17.640

458

  

0.000

000 

8.0000

00 

14.000

000 

24.000

000 

72.000

000 

4 duration_of

_ROM 

440.00

0000 

15.328

409 

12.626

562 

0.000

000 

5.0000

00 

13.000

000 

23.000

000 

72.000

000 
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5 weight 482.00

0000 

3.0169

79 

0.5390

18 

1.140

000 

2.6900

00

  

3.0000

00

  

3.3400

00

  

6.0  

6 temperature 482.00

0000 

38.611

411 

1.3563

49 

33.70

0000 

38.025

000 

38.700

000

  

39.200

000

  

50.000

000

  

7 respiratory_

rate 

477.00

0000 

60.616

352 

17.778

799 

0.000

000 

50.000

000

  

59.000

000

  

69.000

000 

168.00

0000 

8 heart_rate

  

474.00

0000 

151.94

0928 

23.925

021 

84.00

0000 

138.00

0000 

160.00

0000

  

166.00

0000

  

228.00

0000

  

9 wbc 396.00

0000 

16.785

253 

12.369

180 

2.100

000 

4.7675

00 

13.150

000 

30.725

000

  

60.570

000

  

10 neu_count

  

178.00

0000 

4.0197

19 

4.9669

46 

1.250

000 

1.5800

00 

1.7000

00

  

2.5000

00

  

23.000

000

  

11 lym_count 73.000

000 

5.3415

07 

2.6323

97 

1.300

000 

3.2000

00 

4.4000

00

  

7.1000

00

  

13.200

000
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12 mon_count 24.000

000

  

1.5654

17

  

0.6726

07 

0.510

000 

1.1350

00

  

1.4750

00

  

1.7875

00

  

3.0700

00

  

13 eos_count 24.000

000

  

0.2225

00 

0.3192

55 

0.000

000 

0.0500

00

  

0.1100

00 

0.2175

00 

1.4800

00

  

14 bas_count 24.000

000 

0.0583

33

  

0.0996

81 

0.000

000 

0.0100

00 

0.0300

00 

0.0525

00 

0.3900

00 

15 rbc 87.000

000

  

4.2018

39 

1.0212

49 

0.750

000 

3.7050

00 

4.3400

00 

4.8550

00 

6.1300

00 

16 platelet_co

unt 

360.00

0000 

205.01

3889

  

131.82

0856

  

18.00

0000 

113.75

0000

  

147.00

0000

  

283.25

0000

  

708.00

0000

  

17 neonatal_se

psis  

482.00

0000 

0.7842

32 

0.4117

81 

0.000

000 

1.0000

00 

1.0000

00 

1.0000

00 

1.0000

00 

 355 

The descriptive statistics of the data are shown above in table 3. The target variable 356 

(neonatal_sepsis) is binary and has a value either ’1,’ i.e., neonatal sepsis is true or ’0,’ i.e., no 357 

neonatal sepsis. Information about the mean, standard deviation, maximum value, minimum value, 358 

and distribution (quartile range) of each numeric parameter are presented in the table above. 359 

Table 4: Missing Value Analysis (numeric parameters) 360 
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Parameter Missing Count Missing Percent 

duration_of_labour 60  0.12 

duration_of_ROM 42 0.09 

respiratory_rate 5 0.01 

heart_rate 8  0.02 

wbc  86  0.18 

neu_count 304  0.63 

lym_count 409 0.85 

mon_count 458 0.95 

eos_count 458 0.95 

bas_count 458 0.95 

rbc 395 0.82 

platelet_count  122 0.25 

 361 

The Count column presents information about the total number of records of each feature. 12 362 

parameters, duration_of_labour, duration_of_ROM, respiratory_rate, heart_rate, wbc, neu_count, 363 

lym_count, mon_count, eos_count, bas_count, rbc and platelet_count have missing value out of 364 

17 parameters which is given in table 4 above. Parameters with missing percent above 0.80 were 365 

dropped. 366 
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 367 

Figure 9: Distribution plot of numeric features with target (neonatal_sepsis) 368 

Figure 9 shows the distribution of the numeric features with respect to the target variable 369 

(neonatal_sepsis). age_days, gest_age, weight, and respiratory_rate, are normally distributed with 370 

the neonatal sepsis. Parameters such as duration_of_labour, duration_of_ROM, wbc, 371 

platelet_count, and neu_count are positively skewed. While temperature and heart_rate are 372 

negatively skewed. 373 

 374 
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Figure 10: Distribution plot of categorical features with target (neonatal_sepsis) 375 

 376 

Figure 11: Distribution plot of categorical features with target (neonatal_sepsis) 377 

The frequency plot of categorical variables; gender, maternal_febrile, fever_during_labour, 378 

abnormal_vaginal_discharge, antibiotic, place_of_delivery, mode_of_delivery, rupture_of_mem, 379 

foul_smelling_liquor, fever, cold_body, poor_feeding, crying_excessively, weak_cry, lethargy, 380 

respiratory_difficulty, respiratory_distress, tachypnoea, apnoea, crp_count, and blood_culture are 381 

plotted as shown in figure 10 and figure 11 above. The ‘Target (neonatal_sepsis)’ variable is highly 382 

biased as per the information provided by the bar graph. Only 22% of the values are ’0,’ and the 383 

rest of the records have ’1’ values. The balancing of this target feature will be addressed in the 384 

data preparation section. The categorical variables are binary, as shown in figures 10 and 11 above. 385 
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 386 

Figure 12: Heatmap matrix of features with Target (neonatal_sepsis) 387 

The Pearson correlation coefficient was used in the experiment to interpret the linear association 388 

between the numeric-continuous variables. The correlation coefficient range is from -1 to 1; the 389 

linear relationship is stronger as the absolute value increases. The correlation heatmap matrix 390 

shown in figure 12 shows the strength of the relationship between the features. The result deduced 391 

from the matrix is stated below: 392 

• All the variable features have very little correlation with neonatal sepsis. 393 

• platelet_count and temperature are highly negatively correlated. 394 

• heart_rate has a weak positive correlation with respiratory_rate and temperature. 395 

• duration_of_ROM is weakly positively correlated with duration_of_labour. 396 

• neu_count is weakly positively correlated with wbc. 397 
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 398 

Figure 13: Positive-Negative correlation with Target 399 

Figure 13 shows the relationship strength and magnitude of relations between independent features 400 

(variables) and Target (neonatal_sepsis). The features on the left side of the axis have a negative 401 

correlation with neonatal sepsis, i.e., the increase in the value of these features will decrease the 402 

risk of neonatal sepsis. Whereas the variables on the right side of the axis have a positive 403 

correlation, i.e., the increase in these features' value will increase neonatal sepsis's risk. In addition, 404 

the height of the bar graph from the center of the axis shows the magnitude of the correlation 405 

strength of each feature with neonatal sepsis. 406 

Data Preparation 407 

After the data has been analyzed; the first step is to remove the issues identified in the dataset to 408 

enable it to fit for the modeling. The missing values of duration_of_labour, duration_of_ROM, 409 

respiratory_rate, heart_rate, wbc, neu_count, and platelet_count was imputed, respectively, with 410 

the mean value of each feature having missing values. 411 

SMOTE Algorithm: Balancing of Dataset 412 
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Standard classifier algorithms like Logistic Regression have the likelihood to make results biased 413 

regarding classes with a higher number of instances. Base on this characteristic, classifiers most 414 

times ignore minority class features regarding them to be noise. Therefore, the probability of 415 

misclassification of the minority class as compared to the majority class is high.  416 

Table 5: SMOTE oversampling 417 

Target: Neonatal sepsis Imbalanced Dataset Balanced Dataset 

1 378 378 

0 104 378 

 418 

The data set was balanced by creating synthetic records using the SMOTE algorithm, an over-419 

sampling technique. Initially, the number of records belonging to neonatal sepsis as ‘1’ is 420 

significantly higher than those belonging to class ‘0’, as shown in table 5 above. The number of 421 

samples containing the ‘0’ value is increased to 50% after running SMOTE oversampling 422 

algorithm. 423 

Normalization and Standardization: Z-score 424 

The distribution of the features shown in figure 9 provides information regarding the features' 425 

skewness, which was eliminated by the predictor variables' feature scaling. Building the model 426 

with normalized values was done by calculating the Z-score of each numeric variable. 427 

One-Hot Encoding: Categorical Features 428 

Since regression and support vector algorithms only work on numeric features and do not handle 429 

features with string values, the next step after creating the balanced and normalized dataset is to 430 

eliminate categorical features. The 21 categorical features are nominal, i.e., there is no particular 431 



30 

 

natural order in which their values follow. In order to handle these nominal features in 432 

classification, one-hot encoding was carried out.  433 

Table 6: One-Hot Encoding 434 

Categorical features Dummy features 

Gender gender_F, gender_M 

maternal_febrile maternal_febrile_No, maternal_febrile_Yes 

fever_during_labour fever_during_labour_No, fever_during_labour_Yes, 

abnormal_vaginal_discharge abnormal_vaginal_discharge_No, abnormal_vaginal_discharge_Yes 

Antibiotic antibiotic_No, antibiotic_Yes 

place_of_delivery place_of_delivery_home, place_of_delivery_Hospital 

mode_of_delivery mode_of_delivery_C-section, mode_of_delivery_SVD 

'rupture_of_mem rupture_of_mem_Manual, rupture_of_mem_Spontaneous 

foul_smelling_liquor foul_smelling_liquor_No, foul_smelling_liquor_Yes 

Fever fever_No, fever_Yes 

cold_body cold_body_No, cold_body_Yes 

poor_feeding poor_feeding_No, poor_feeding_Yes 

crying_excessively crying_excessively_No, crying_excessively_Yes 

weak_cry weak_cry_No, weak_cry_Yes 

Lethargy lethargy_No, lethargy_Yes 

respiratory_difficulty respiratory_difficulty_No, respiratory_difficulty_Yes 

respiratory_distress respiratory_distress_No, respiratory_distress_Yes 

Tachypnoea tachypnoea_No, tachypnoea_Yes 

Apnoea apnoea_No, apnoea_Yes 
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crp_count crp_count_<10, crp_count_>10 

blood_culture blood_culture_Negative, blood_culture_Positive 

 435 

One-hot encoding involves creating dummy features where each possible value of the nominal 436 

feature has a binary value. The number of features increased to 53 after applying one-hot encoding 437 

to the 21 categorical features. Dummy features created from categorical features is shown above 438 

(Table 6). 439 

Random Forest Classifier: Feature Importance 440 

 441 

Figure 14: Random Forest Classifier: Feature importance 442 

Finally, the Random Forest algorithm was used to identify each feature's importance in predicting 443 

neonatal sepsis, shown in figure 14. Each feature is assigned a score to show the importance of the 444 

feature in the model. The higher the score, the higher the importance of that particular feature. 445 
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While features with a lower score are considered the least important. The height of the bar graph 446 

shows how important each feature is with neonatal sepsis. 447 

Modelling 448 

The Developed Algorithm for Neonatal Sepsis Prediction 449 

The proposed algorithm consists of four phases: maternal condition, observational condition, 450 

laboratory condition, and neonatal sepsis. 451 

Table 7: Pseudo code for the maternal condition 452 

Step 1: Create a tuple M of the 6 parameters declared above, M = (a0…an), 1 ≤ n ≤ 6 

Step 2: Initialize elements of tuple M; R = (b0… bⅈ), 1 ≤ ⅈ≤ 6 

Step 3: FOR each ⅈ in R DO 

IFⅈ← b0= = “Yes” THEN  

RETURN True 

ELIF ⅈ ← b1 = = “Yes” THEN  

RETURN True 

ELIF ⅈ← b2 = = “≥18 hours” THEN  

RETURN True 

ELIF ⅈ← b3 = = “≥18 hours” THEN  

RETURN True 

ELIF ⅈ← b4 = = “Yes” THEN  

RETURN True 

ELIF ⅈ← b5 = = “No” THEN  

RETURN True 

ELSE 
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RETURN False 

END IF 

END FOR 

Step 4: IF True ≥ 1 

RETURN “Maternal Condition” 

ELSE 

RETURN “No Maternal Condition” 

END IF 

 453 

Phase I: Maternal Condition  454 

This phase checks if a neonate has a maternal condition. The algorithm looks through the maternal 455 

risk characteristics provided and determines based on the values if a neonate has a maternal 456 

condition or not. Table 7 shows the pseudo-code of the maternal condition phase. 457 

The Parameters used (maternal risk characteristics): 458 

a0 = Fever during labor. 459 

a1 = Maternal febrile during pregnancy. 460 

a2 = Duration of rupture of membrane  461 

a3 = Duration of labor  462 

a4 = Foul odor of the amniotic fluid. 463 

a5 = Antibiotic treatment received by mother ≤4 hours prior to delivery. 464 

Parameter’s value: 465 

b0 = (a0 = Yes) 466 

b1 = (a1 = Yes) 467 

b2 = (a2 = ≥18 hours) 468 
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b3 = (a3 = ≥18 hours) 469 

b4 = (a4 = Yes) 470 

b5 = (a5 = No) 471 

Table 8: Pseudo code for the observational condition 472 

Step 1: Create a tuple O of the 6 parameters declared above, O = (c0… cx), 1 ≤ x ≤ 6 

Step 2: Initialize elements of tuple O; S = (d0… dj), 1 ≤ j ≤ 6 

Step 3: FOR each j in S DO 

IF j←d0= = “≥160” OR “≤100” THEN  

RETURN True 

ELIF j← d1 = = “≥38” OR “≤36.5” THEN  

RETURN True 

ELIF j← d2 = = “Yes” THEN  

RETURN True 

ELIF j← d3 = = “Yes” THEN  

RETURN True 

ELIF j← d4 = = “Yes” THEN  

RETURN True 

ELIF j← d5 = = “Yes” THEN  

RETURN True 

ELSE 

RETURN False 

END IF 

END FOR 
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Step 4: IF True ≥ 2 

RETURN “Observational Condition” 

ELSE 

RETURN “No Observational Condition” 

END IF 

 473 

Phase II: Observational Condition  474 

This phase checks if a neonate has an observational condition. The algorithm looks through the 475 

neonatal clinical signs provided and determines based on the values if a neonate has an 476 

observational condition or not. Table 8 shows the pseudo-code of the observational condition 477 

phase. 478 

The Parameters used (neonatal clinical signs): 479 

c0 = Heart rate  480 

c1 = Temperature  481 

c2 = Respiratory distress 482 

c3 = Apnea condition. 483 

c4 = Lethargy condition. 484 

c5 = Feeding difficulty 485 

Parameter’s value: 486 

d0 = (c0 = ≥160 (tachycardia) or ≤100 (bradycardia) BPM) 487 

d1 = (c1 = ≥38°C (fever) or ≤36.5°C (hypothermia)) 488 

d2 = (c2 = Yes) 489 

d3 = (c3 = Yes) 490 

d4 = (c4 = Yes) 491 
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d5 = (c5 = Yes) 492 

Table 9: Pseudo code for the laboratory condition 493 

Step 1: Create a tuple L of the 4 parameters declared above, L = (e0…ec), 1 ≤ c ≤ 4 

Step 2: Initialize elements of tuple L; T = (f0… fk), 1 ≤ k ≤ 4 

Step 3: FOR each k in T DO 

IF k←f0= = “≥10” THEN  

RETURN True 

ELIF k← f1= = “≤5,000” OR “≥30,000” THEN  

RETURN True 

ELIF k← f2= = “≤1,750” THEN  

RETURN True 

ELIF k← f3= = “≤150,000” THEN  

RETURN True 

ELSE 

RETURN False 

END IF 

END FOR 

Step 4: IF True ≥ 2 

RETURN “Laboratory Condition” 

ELSE 

RETURN “No Laboratory Condition” 

END IF 

 494 
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Phase III: Laboratory Condition  495 

This phase checks if a neonate has a laboratory condition. The algorithm looks through the 496 

laboratory tests provided and determines based on the values if a neonate has a laboratory condition 497 

or not. Table 9 shows the pseudo-code of the laboratory condition phase. 498 

The Parameters used (laboratory tests): 499 

e0 = C-reactive protein 500 

e1 = White blood cell count 501 

e2 = Neutrophil count  502 

e3 = Platelet count 503 

Parameter’s value: 504 

f0 = (e0 = ≥10mg/L) 505 

f1 = (e1 = ≤5,000 or ≥30,000 per microL) 506 

f2 = (e2 = ≤1,750 per microL) 507 

f3 = (e3 = ≤150,000 per microL) 508 

Table 10: Pseudo code for the neonatal sepsis 509 

Step 1: Create a set N of the 3 parameters declared above, N = (g0…ge), 1 ≤ e ≤ 3 

Step 2: Initialize elements of set N; P = (h0… hy), 1 ≤ y ≤ 3 

Step 3: FOR each y in P DO 

IF y= = “Yes” THEN  

RETURN True 

ELSE 

RETURN False 

END IF 
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END FOR 

Step 4: IF True = = 3 

RETURN “Neonatal Sepsis” 

ELSE 

RETURN “No Neonatal Sepsis” 

END IF 

 510 

Phase IV: Neonatal Sepsis 511 

This phase checks if a neonate has neonatal sepsis. The algorithm looks through the maternal 512 

condition, observational condition, and laboratory condition and determines based on their 513 

outcomes if a neonate has sepsis or not. Table 10 shows the pseudo-code of the neonatal sepsis 514 

phase. 515 

The Parameters used (neonatal sepsis variables): 516 

g0 = Maternal condition  517 

g1 = Observational condition 518 

g2 = Laboratory condition 519 

Parameter’s value: 520 

h0 = (g0 = Yes) 521 

h1 = (g1 = Yes) 522 

h2 = (g2 = Yes) 523 

In this phase, classification models (SVM, LR, KNN, NB, and DT) were built based on the 524 

proposed algorithm for predicting neonatal sepsis. The balanced dataset created after the addition 525 

of dummy features is used as training data to build the models. The input data is first normalized 526 
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before training of the model. In order to achieve a better fit of the model, correlation and 527 

multicollinearity analysis is performed. The features were all very weakly correlated with each 528 

other, and therefore, none of the features were dropped while training the model. In total, seven 529 

supervised machine learning models are built, SVM_L, SVM_R, SVM_P, LR, KNN, NB, and DT. 530 

The models had 10 accuracies per model as each model is fitted by running 10 iterations with each 531 

iteration giving the model's accuracy. 532 

Support Vector Machine: Target Values 533 

Table 11: SVM kernels and tuning parameters 534 

SVM kernels C  γ 

Linear 1,2,3,4,5,6,7,8,9,10 0.01,0.02,0.03,0.04,0.05,0.10,0.2,0.3,0.4,0.5 

Radial basis function 1,2,3,4,5,6,7,8,9,10 0.01,0.02,0.03,0.04,0.05,0.10,0.2,0.3,0.4,0.5 

Polynomial 1,2,3,4,5,6,7,8,9,10 0.01,0.02,0.03,0.04,0.05,0.10,0.2,0.3,0.4,0.5 

 535 

Firstly, the Support Vector Machine is built using 10 k-fold stratified validation technique to split 536 

data into training and test set. Three types of SVM models were used, SVM with linear kernel, 537 

radial kernel, and polynomial kernel tuned with different values of tuning parameters ‘C’ and ‘γ’ 538 

as shown in table 11 above. Scikit-learn in python has inbuilt packages that hold functions for the 539 

stratified k-fold cross validator, SVM modeling, LR modeling, KNN modeling, NB modeling, and 540 

DT modeling. The ‘StratifiedKFold’ function is fed with all the data instances, having 10 as the 541 

number of splits used. The 10 folds are randomly created, of which 9 of these folds are used for 542 

model training, and one sample is set aside for model testing. The folds are created in a way that 543 

each fold contains an equal ratio of the target variable; let’s say if there are 70-30 ratio of neonatal 544 

sepsis and non-neonatal sepsis in the first fold, then other folds will also have 70-30 ratio. In total, 545 
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38 features were used in training the model, of which 21 are categorical features, and one-hot 546 

encoding was used to convert them into binary vectors as expressed in data preparation. 547 

 548 

Figure 15: ROC curve: Support Vector Machine – Linear 549 

The linear SVM algorithm model obtained a minimum and maximum accuracy of 0.89% and 550 

0.97%, with average classifier accuracy of 0.95%. From the ROC curve, it can be seen that almost 551 

half of the folds achieved accuracy above 0.85%, as shown in figure 15 above. It can be deduced 552 

from the results that the model's performance with linear SVM is slightly higher than KNN and 553 

NB models. 554 
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 555 

Figure 16: ROC curve: Support Vector Machine – Radial 556 

 557 

Figure 17: ROC curve: Support Vector Machine – Poly 558 
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The ROC curves were plotted separately for SVM radial basis function and polynomial kernels. 559 

The average classifier accuracy and accuracy per iteration are shown in figure 16 and figure 17. 560 

Both models obtained a mean accuracy of 0.98%. 561 

Logistic Regression: Target Values 562 

 563 

Figure 18: ROC curve: Logistic Regression 564 

Similarly, the Logistic Regression model is built using 10 k-fold stratified samplings to create 565 

training and test datasets. The model is a binary classification regression model. After the training 566 

of the model, then it is used to predict the target value. The model's score is created through this 567 

process, which then gives the prediction accuracy of the model. Finally, 10 scores are then created 568 

in which the mean of these scores gives the average accuracy of the LR classifier. The LR model 569 

obtained a minimum and maximum accuracy of 0.91% and 0.99%, respectively, with an average 570 

mean accuracy of 0.95%, as shown in figure 18 above. 571 

K-Nearest Neighbor: Target Values 572 
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 573 

Figure 19: ROC curve: K-nearest neighbor 574 

K-nearest neighbor model is built using 10 k-fold stratified samplings to create training and test 575 

datasets. KNN is preferably used when the features all have continuous value. Classification is 576 

achieved when the nearest neighbor is identified, which helps determine the class of an unknown 577 

sample. The model obtained a minimum and maximum accuracy of 0.86% and 0.97% with average 578 

classifier accuracy of 0.91%, as shown in figure 19 above. 579 

Naïve Bayes: Target Values  580 
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 581 

Figure 20: ROC curve: Naïve bayes 582 

Naïve Bayes model is built using 10 k-fold stratified samplings to create training and test datasets. 583 

The model uses all the attributes in the data and analyses these attributes individually as though 584 

they all have equal importance and independent of each other. The model obtained a minimum 585 

and maximum accuracy of 0.83% and 0.95% with average classifier accuracy of 0.90%, as shown 586 

in figure 20 above. 587 

Decision Tree: Target Values 588 
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 589 

Figure 21: ROC curve: Decision tree 590 

The decision tree model is built using 10 k-fold stratified samplings to create training and test 591 

datasets. For the model to classify a new item, it first needs to generate a decision tree based on 592 

the attribute values of the available training data. The model obtained a minimum and maximum 593 

accuracy of 0.95% and 1.00% with average classifier accuracy of 0.98%, as shown in figure 21 594 

below. The classifiers' classification accuracy will be discussed further in the next chapter, 595 

'Discussion.' 596 

Evaluation 597 

In order to evaluate the model performance, a ROC-AUC curve is required, which was created in 598 

the modeling section. The computing of True Positive Rate (TPR) and False Positive Rate (FPR) 599 

is the key requirement for plotting of ROC curve. roc_curve() and auc() are inbuilt functions in 600 

Sklearn, which returns TPR and FPR as output. 601 

Table 12: Physician diagnosis matrix 602 

Physician diagnosis versus gold standard Blood culture +ve Blood culture -ve 
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Septic  47 383 

Not septic 6 46 

Physician sensitivity  0.89  

Physician specificity 0.11  

Physician PPV 0.11  

Physician NPV 0.88  

 603 

The models were compared with an average accuracy achieved after each iteration from the 604 

stratified k-fold validation technique used to split train-test data. The proposed algorithm's 605 

performance was then compared with the physician's diagnosis shown in table 12 above. 606 

Table 13: Comparing model prediction with Physician diagnosis 607 

Algorithm Sensitiv

ity 

Differen

ce 

Positive 

Predictive 

Value 

(PPV) 

Differen

ce 

Negative 

Predictive 

Value 

(NPV) 

Differen

ce 

Area 

under 

the ROC 

curve 

(AUC) 

Fixed specificity (0.11)  

Physician 0.89  0.11  0.88  NA 

SVM_L 0.97 0.08 0.8 0.69 0.97 0.09 0.95 

SVM_RBF 1.0 0.11 0.95 0.84 1.0 0.12 0.98 

SVM_POLY 1.0 0.11 0.93 0.82 1.0 0.12 0.98 

LR 0.97 0.08 0.88 0.77 0.97 0.09 0.95 

KNN 0.94 0.05 0.92 0.81 0.94 0.06 0.91 
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NB 0.95 0.06 0.95 0.84 0.95 0.07 0.90 

DT 0.95 0.06 0.95 0.84 0.95 0.07 0.98 

 608 

Table 13 above shows the performance measures generated by fixing specificity at 0.11. 609 

 610 

Table 14: Comparing model prediction with Physician diagnosis 611 

Algorithm Sensitiv

ity 

Differen

ce 

Positive 

Predictive 

Value 

(PPV) 

Differen

ce 

Negative 

Predictive 

Value 

(NPV) 

Differenc

e 

Area 

under 

the ROC 

curve 

(AUC) 

Fixed sensitivity (0.89) 

Physician 0.11  0.11  0.88  NA 

SVM_L 0.97 0.86 0.97 0.86 0.90 0.02 0.95 

SVM_RBF 0.95 0.84 0.95 0.84 0.95 0.07 0.98 

SVM_POL

Y 

0.97 0.86 0.97 0.86 0.95 0.07 0.98 

LR 0.95 0.84 0.94 0.84 0.86 -0.02 0.95 

KNN 1.0 0.89 1.0 0.89 0.76 -0.12 0.91 

NB 0.97 0.86 0.97 0.86 0.95 0.07 0.90 

DT 0.95 0.84 0.95 0.84 0.95 0.07 0.98 

 612 

Table 14 above shows the performance measures generated by fixing sensitivity at 0.89. 613 
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 614 

Summary of Implementation 615 

This chapter outlines the practical application of the experiments to answer the research questions. 616 

The exploratory data analysis is carried out on the dataset to understand the distribution of features 617 

in the dataset with respect to the target variable. In order to explore the strength of the relationship 618 

between each feature, a heatmap matrix was created. Except for features having missing value 619 

above 0.80%, none of the features were dropped because all the features were weakly correlated 620 

with each other. 621 

To make the data fit for modeling, data-preprocessing techniques that involve imputation of 622 

missing value, balancing of the values of the target variable using SMOTE algorithm, 623 

normalization of variables using Z-score, and creation of dummy variables were all used. Further, 624 

seven neonatal sepsis prediction models were built using SVM, LR, KNN, NB, and DT based on 625 

the proposed algorithm. The training-test dataset was derived from stratified K-fold cross-626 

validation techniques giving a result of 10 accuracies per model. ROC curve for the built models 627 

was created, and the AUC value was derived. Finally, to evaluate the performance of the proposed 628 

algorithm, the sensitivity and specificity were compared with that of the physician diagnosis.  629 

 630 

Discussion 631 

This chapter gives a detailed analysis of the results of the experiment carried out in the previous 632 

chapter. The proposed algorithm and the ML algorithms' performance will be discussed, and there 633 

will be a conclusion of the experiment's strengths and limitations after a critical evaluation.  634 

This research proposes an algorithm for neonatal sepsis prediction, which was used to train five 635 

supervised machine learning algorithms, and their performance was evaluated using the AUROC 636 
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value. The classifiers are trained on a set of samples with balanced dependent variable values by 637 

applying the oversampling data technique. Before the training, data preprocessing steps such as 638 

imputation of missing values, feature standardization, and normalization, generation of dummy 639 

variables have been applied to the features. 640 

Performance Evaluation of the Proposed Algorithm 641 

The proposed algorithm is four-phased, consisting of maternal risk characteristics, neonatal 642 

clinical signs, and laboratory tests. In order to evaluate the diagnostic performance of the proposed 643 

algorithm, the performance of the trained ML algorithms was compared to the physician's 644 

diagnosis using the dataset from MRRH. The study used a representative set of ML algorithms. 645 

Their performance measures were generated so that their sensitivities and specificities are the same 646 

as that of the physician. The specificity of the ML algorithms was fixed at the physician's 647 

specificity while calculating the sensitivity. The ML algorithms' sensitivity was fixed at the 648 

physician's sensitivity while calculating the specificity, as shown in tables 13 and 14. This allowed 649 

deducing of whether the proposed algorithm performs better or worse than the physician diagnosis. 650 

This study's result shows that the proposed algorithm outperformed the physician diagnosis. The 651 

results also suggest that the proposed algorithm can be used for the early prediction of neonatal 652 

sepsis. 653 

One of the studies that are closest to this study reported in the literature is a retrospective study for 654 

predicting neonatal late-onset sepsis (LOS) using the RALIS algorithm that consists of neonatal 655 

clinical signs (54). Mithal et al. (2018) reported an AUC of 0.90 for LOS prediction using linear 656 

regression based on a comparison between cases and controls (54). The second is also a 657 

retrospective study for predicting neonatal LOS using a diagnostic algorithm consisting of neonatal 658 

clinical signs and laboratory tests (55). Mani et al. (2014) explored a set of ML algorithms (SVM, 659 
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NB, TAN, AODE, KNN, CART, RF, LR, and LBR) with the highest AUROC value been 0.65 660 

based on a comparison with the physician's treatment (55). In contrast, this study focused on early-661 

onset sepsis (EOS).  It explored a set of ML algorithms with the highest AUROC value been 0.98 662 

and the lowest being 0.90 based on a comparison with the physician's diagnosis. It included more 663 

variables in the proposed algorithm to distinguish neonates without sepsis to avoid subjecting 664 

neonates without sepsis to unnecessary antibiotics use. 665 

The proposed algorithm with ML algorithms may also identify truly infected neonates before the 666 

availability of blood culture tests and, therefore, contribute to earlier detection and treatment. The 667 

improvement in the sensitivity of the proposed algorithm is not at the cost of its specificity. The 668 

proposed algorithm and the ML algorithms used in this study have significant real-time strengths. 669 

They could be used as an early warning system to alert physicians that neonatal sepsis may be 670 

present or developing. However, like the vital signs monitoring proposed by Gur et al. (2015) and 671 

clinically evaluated by Mithal et al. (2018), these tools should be used as decision support tools 672 

and not as stand-alone decision-making expert systems (54,56). The proposed algorithm has to be 673 

tested in prospective settings and using data from other institutions (in future studies) to ascertain 674 

its clinical setting performance. 675 

Statistical Significance of the Experimental Results 676 

The Wilcoxon Signed-Rank Test was performed on the accuracy scores recorded for each model, 677 

i.e., 10 accuracies per model, to test the statistical significance of the experimental results. The 678 

cut-off chosen to determine the significance of the results is '0.05'. 679 

Table 15: Statistical significance of experimental results 680 

Model p-Value 

SVML – SVM_RBF <0.01 
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SVML - SVM_POLY  0.02 

SVML - LR  0.92 

SVML – KNN 0.06 

SVML - NB  <0.01 

SVM_RBF - SVM_POLY 0.92 

SVM_RBF - LR  <0.01 

SVM_RBF – NB <0.01 

SVM_RBF - DT  0.87 

SVM_POLY - LR  0.01 

SVM_POLY - NB  <0.01 

SVM_POLY - DT  0.86 

LR - NB  0.02 

LR – DT <0.01 

NB - DT  <0.01 

 681 

As shown in table 15 above, 10 out of 15 results are statistically significant. Support vector 682 

machine algorithms with radial basis function, polynomial kernels, and Decision tree algorithm 683 

performed better than the other algorithms in predicting neonatal sepsis as the results were 684 

statistically significant.  685 

Strength and Limitations of Results 686 

The study proposed an algorithm that explores the combination of maternal risk factors, neonatal 687 

clinical signs, and laboratory tests as predictor variables in neonatal sepsis prediction. The study 688 

found the combination to be very efficient in the diagnosis of neonatal sepsis. 689 
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The research also studied the contribution of supervised machine learning techniques in clinical 690 

diagnosis. The experiment used five machine learning algorithms (SVM, LR, KNN, NB, and DT) 691 

belonging to different families and trained on the same dataset. The algorithms used are similar in 692 

a way that they can all be used for the classification of instances but also different as some of the 693 

algorithms are preferred where the data is linearly separable or have a single decision surface while 694 

some of the algorithms work best with non-linearly separable classification problems. 695 

Lastly, Data pre-processing techniques, namely feature scaling using z-score, balancing of the 696 

dataset using SMOTE algorithm, and creating a dummy variable using one-hot encoding, are 697 

studied extensively throughout this research, and this was used on the data to improve the results. 698 

Multiple iterations are used in the modeling by applying stratified 10 k-fold validation. The mean 699 

accuracy of the accuracies derived from each fold is taken, which is the average accuracy of the 700 

classifiers. 701 

Moving ahead to the limitations, the proposed algorithm was developed based on the available 702 

screening parameters on the patient's records from MRRH. This limited the study from exploring 703 

some important screening parameters. The missing values in the dataset were higher with the 704 

laboratory tests, limiting the number of laboratory tests used. The proposed algorithm may function 705 

differently if modified with the identified screening parameters that are not currently in the 706 

algorithm. This can be explored further as part of the future study. 707 

 708 

Another limitation of this study is that the ML algorithms' training and testing are based on a small-709 

sized dataset. The dataset trends are biased; records containing neonatal sepsis as true are (3/4) of 710 

the records. If a relevant size of data is used for the experiment, the ML algorithms may function 711 
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differently, and this can also be explored further as part of the future study. Lastly, the ML 712 

algorithms were not compared with an AUPRC value due to the time limit. 713 

Summary of Analysis 714 

In this chapter, the breakdown and evaluation of the whole experiment are discussed. The five 715 

algorithms are built on a dataset with balanced values. The proposed algorithm outperformed the 716 

physician's diagnosis. 717 

The SVM algorithms and DT outperformed the other ML algorithms in the prediction of neonatal 718 

sepsis. The 'Wilcoxon Signed-Rank Test' was used to calculate each result's statistical significance 719 

with a p-value <0.05. The results show that the proposed algorithm with SVM and DT algorithms 720 

is appropriate and efficient for predicting neonatal sepsis.  721 

The results' strength and the limitation are explained, focusing on the proposed algorithm 722 

performance and the data preprocessing techniques used to enhance the ML algorithms' 723 

performance. The small-sized imbalanced data and the limited number of screening parameters 724 

used in developing the proposed algorithm were the experiments' major limitations. A detailed 725 

summary of the research, its contribution, impact, and future research areas are given in the 726 

following chapter. 727 

 728 

Conclusion 729 

The proposed algorithm was developed based on three main variables, which include; maternal 730 

risk factors, neonatal clinical signs, and laboratory tests. The proposed algorithm was compared 731 

with the physician's diagnosis, and the proposed algorithm was found to outperform the physician's 732 

diagnosis. The study provides evidence that the combination of maternal risk factors, neonatal 733 

clinical signs, and laboratory tests can effectively diagnose neonatal sepsis. Based on the study 734 
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result, the proposed algorithm can help identify neonatal sepsis cases as it exceeded clinicians' 735 

sensitivity and specificity. A prospective study is warranted to test the algorithm's clinical utility, 736 

which could provide a decision support aid to clinicians. This will undoubtedly improve the early 737 

recognition and treatment of neonatal sepsis. The study results suggest that ML algorithms can 738 

identify neonatal sepsis cases within a large and complex database. 739 

Future Work & Recommendations 740 

The proposed algorithm was developed on limited screening parameters. It was based on the 741 

available screening parameters on the patient’s records from MRRH, and the dataset used in the 742 

experiment is small in size. A sufficient number of screening parameters could be included in the 743 

algorithm to develop a more robust algorithm. Screening parameters such as chorioamnionitis, 744 

GBS status, heart rate variability, absolute neutrophil count, I/T ratio, M-ESR, and total leukocyte 745 

count can be used to modify the proposed algorithm. Hence, another area for future research would 746 

be to conduct the research prospectively by directly monitoring the patients, enabling the capturing 747 

of required patient’s information that will help develop a more generic algorithm, and validation 748 

of this algorithm is required to understand its functionality in a clinical setting.  749 

This research focused on five algorithms: support vector, logistic regression, k-nearest neighbor, 750 

naïve bayes, and decision tree. However, ML algorithms such as random forests (RF) and neural 751 

networks can be further compared to find the best algorithm in relation to learning time, prediction 752 

accuracy, and size of data available. Due to time constraints, there was no much tuning of the SVM 753 

algorithm. Hence, future work can apply deep learning algorithms. Carry out a more enhanced 754 

tuning on the SVM algorithm to improve its prediction accuracy. Use a sufficient amount of data 755 

to train algorithms, and evaluate using the area under the precision-recall curve (AUPRC).  756 

 757 
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NMR Neonatal Mortality Rate 

NPV Negative Predictive Value 

PPV Positive Predictive Value 



56 

 

qSOFA quick Sepsis-Related Organ Dysfunction Assessment Score 
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