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Abstract 

Background Malaria risk is not uniform across relatively small geographic areas, such as within a village. This hetero-
geneity in risk is associated with factors including demographic characteristics, individual behaviours, home construc-
tion, and environmental conditions, the importance of which varies by setting, making prediction difficult. This study 
attempted to compare the ability of statistical models to predict malaria risk at the household level using either (i) free 
easily-obtained remotely-sensed data or (ii) results from a resource-intensive household survey.

Methods The results of a household malaria survey conducted in 3 villages in western Uganda were combined with 
remotely-sensed environmental data to develop predictive models of two outcomes of interest (1) a positive ultra-
sensitive rapid diagnostic test (uRDT) and (2) inpatient admission for malaria within the last year. Generalized additive 
models were fit to each result using factors from the remotely-sensed data, the household survey, or a combination 
of both. Using a cross-validation approach, each model’s ability to predict malaria risk for out-of-sample households 
(OOS) and villages (OOV) was evaluated.

Results Models fit using only environmental variables provided a better fit and higher OOS predictive power for 
uRDT result (AIC = 362, AUC = 0.736) and inpatient admission (AIC = 623, AUC = 0.672) compared to models using 
household variables (uRDT AIC = 376, Admission AIC = 644, uRDT AUC = 0.667, Admission AUC = 0.653). Combining 
the datasets did not result in a better fit or higher OOS predictive power for uRDT results (AIC = 367, AUC = 0.671), but 
did for inpatient admission (AIC = 615, AUC = 0.683). Household factors performed best when predicting OOV uRDT 
results (AUC = 0.596) and inpatient admission (AUC = 0.553), but not much better than a random classifier.

Conclusions These results suggest that residual malaria risk is driven more by the external environment than home 
construction within the study area, possibly due to transmission regularly occurring outside of the home. Addition-
ally, they suggest that when predicting malaria risk the benefit may not outweigh the high costs of attaining detailed 
information on household predictors. Instead, using remotely-sensed data provides an equally effective, cost-efficient 
alternative.
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Background
Plasmodium falciparum malaria remains an important 
cause of global morbidity and mortality, accounting for 
an estimated 200 million annual cases and 600,000 deaths 
in the Africa alone [1]. While significant progress against 
malaria has been made, largely due to the widespread 
distribution and use of long-lasting insecticidal nets 
(LLINs), there is increasing evidence that progress has 
stalled in many of the highest burden settings [1]. Heter-
ogeneity in bloodmeal-seeking behaviours (i.e., location 
and timing of feeding) may place an upper bound on the 
effectiveness of LLINs [2–4] and result in proportionally 
more bites occurring outdoors following LLIN deploy-
ment [5]. This has major implications for predicting 
residual malaria risk following LLIN deployment.

Therefore, an understanding of the factors beyond 
LLIN availability and use that are associated with malaria 
transmission remains necessary to target control meas-
ures effectively [6, 7]. Uganda has been a leader in the 
effort to achieve universal coverage of LLINs and is 
therefore an interesting setting to examine the factors 
associated with residual malaria risk [8]. The country 
conducted its first mass distribution campaign in 2013, 
[9] followed by similar campaigns every three years, 
including in 2017–18 and most recently in 2020–21 [10]. 
Remarkably, households reporting at least one LLIN 
increased from 16% in the 2006 Demographic and Health 
Survey (DHS) to more than 80% in the 2018 Malaria Indi-
cator Survey (MIS), while over the same period the pro-
portion of households with at least one LLIN for every 
two people increased from 5 to 54% [11]. Despite this 
progress, malaria transmission persists with more than 
12 million cases reported in 2020 [1].

Malaria transmission intensity varies across Uganda, 
but individual and household risk may differ substan-
tially even within a relatively small geographic area. Risk 
is impacted by numerous demographic, occupational, 
behavioural, and geographic factors occurring on differ-
ent spatial and temporal scales which makes risk predic-
tion, especially at fine-scale resolution, difficult [12]. Yet, 
understanding this fine scale spatial heterogeneity, which 
may be best explained by environmental conditions in 
the immediate peri-domestic space as well as household 
socio-economic factors, is critically important. How to 
most effectively identify and incorporate these variables 
into predictive models is not well defined.

Therefore, the goal of this study was to compare the 
ability of statistical models to predict malaria risk at the 
household level using either (i) remotely-sensed data or 
(ii) results from a household survey. These two methods 
of collection differ in both (1) the resources required to 
obtain the information and (2) the scale over which the 
predictors act. For example, information about home 

construction is costly to obtain and likely impacts risk 
within the home but not for neighbours. On the other 
hand, the presence of flooded areas is easily detected 
and may impact risk for a large area but is unlikely to 
explain differences in risk between neighbours. Given the 
level of detail, it was hypothesized that the inclusion of 
information collected in household surveys would result 
in higher predictive ability compared with only using 
remotely-sensed environmental data.

Methods
Setting
The Bugoye sub-county is located in the Kasese Dis-
trict of Western Uganda. With an area of approximately 
55 km.2, this rural, highland area is comprised of 35 vil-
lages. The population of the sub-county is nearly 42,000, 
17% of whom are children under 5 years of age [13]. The 
area is characterized by its varied geography, with deep 
river valleys and steep hillsides reaching elevations reach-
ing 2500 m. The climate in western Uganda permits year-
round malaria transmission with semi-annual peaks after 
the rainy seasons in May and November [14, 15] driven 
by a mixture of Anopheles gambiae, Anopheles arabien-
sis, and Anopheles funestus, among others [16]. The most 
recent MIS in the Tooro subnational region (2018–2019), 
which includes the sub-county, reported a PfPR of 7.3% 
although rates of 30% are reported in low-lying villages 
located along the river basins [11, 17].

Household survey
The three participating villages were purposefully 
selected to achieve diversity in geography and malaria 
transmission intensity as determined by a previous sur-
vey of all 35 villages [17]. One village, Rwakingi 1A 
 (PfPR2-10 18.6%) was chosen because of its generally flat, 
flood-prone terrain adjacent to the Mubuku River. In 
contrast, Bunyangoni village  (PfPR2-10 10.5%), sits at the 
foothills of the Rwenzori mountains with a rapid increase 
in elevation from approximately 1200  m to 1600  m. 
Lastly, Kasanzi village  (PfPR2-10 31.7%) was chosen 
because a spillway from a nearby hydroelectric plant runs 
through the village, which was hypothesized to possibly 
be a man-made driver of malaria risk, given the intermit-
tent nature of water flow through the canal.

In collaboration with local community health work-
ers, all households in each village (Fig.  1) were visited 
between November 3rd, 2020 and November 24th, 2020, 
a time that aligned with the traditional second rainy 
period of the year. At each household, field staff provided 
detailed information about the objectives, eligibility cri-
teria, methods, and risks/benefits of the study to an adult 
caregiver. Individuals agreeing to participate were asked 
to provide written consent. Demographic information 
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was collected from all participating household members. 
Additionally, adult caregivers were asked to provide writ-
ten consent for a finger-prick blood draw from all eligible 
children aged 2–12  years, while children ≥ 8  years also 
provided written assent. Participants received a house-
hold identifier card to track subsequent malaria infec-
tions and a small incentive (e.g. $2–3 or small in-kind 
items) to offset the opportunity cost of completing the 
survey. If no adult was present at the time of the visit, 
the survey team recorded the location and moved to the 
next household. Three attempts were made to revisit any 
households and all eligible individuals residing in the 
household were included.

At each participating household, field staff docu-
mented the household location using a GPS-equipped 
device and administered a questionnaire modified from 
the most recent DHS household questionnaire [11]. 
This questionnaire included information on household 
construction, water sources, toilet location, the owner-
ship of various animals and durable goods, and the use 
of LLINs and indoor residual spraying. Wealth compo-
nents were calculated for each household using princi-
pal component analysis of survey results, similar to the 
DHS wealth index, [18] but retaining the first two prin-
cipal components. While several options were given for 
water sources, no household with children reported a 
water source other than “piped water” or “surface water”, 

so it was reduced to a binary variable. Staff measured 
axillary temperature and drew approximately 250  µl of 
capillary blood from all children 2–12  years of age via 
finger-prick or heel stick. Approximately 50  µl of blood 
drawn was used for an Alere Malaria Ag ultra-sensitive 
rapid diagnostic test (uRDT) (Abbott Laboratories, USA) 
[19]. The uRDT is a qualitative test for the detection of 
histidine-rich protein II (HRP-II) antigen of P. falcipa-
rum in human whole blood. All uRDT were obtained 
directly from the manufacturer, used prior to the date 
of expiry, and performed in accordance with the manu-
facturer’s instructions. Children with fever (axillary tem-
perature ≥ 38° Celsius) and a positive uRDT received 
weight-based treatment with artemether lumefantrine 
in accordance with local treatment guidelines [20]. All 
information was recorded and uploaded to a secure elec-
tronic database (i.e., REDCap) using smart phones with 
cellular internet connectivity [21].

Environmental data
Elevation, slope, and flow direction were derived from 
the Shuttle Radar Topography Mission 30 m Digital Ele-
vation Model [22] using ArcGIS Pro (v. 2.7.0) [23]. (Addi-
tional file 1) Slope is a measurement of steepness of the 
ground surface, calculated as Slope = tan−1

(

�Elevation
Distance

)

 . 
Flow direction is the direction in which water would flow 
out of the cell, corresponding roughly to the downhill 
direction, given in compass direction with east desig-
nated as 0. To account for the cyclical nature of compass 
direction, e.g., both 0 and 360 correspond to east, sine 
and cosine transforms were used. Normalized difference 
vegetation index (NDVI) was derived from U.S. Geologi-
cal Survey Landsat 8 30  m imagery from December 12, 
2020 [24]. To account for human and vector movement, 
environmental variables, except distance to the nearest 
river, were averaged across buffer regions with radii of 
0 m, 100 m, 250 m, 500 m, 1000 m, 1500 m, and 2000 m 
around each participant’s residence. Only the buffer sizes 
that produced the lowest Akaike information criteria 
(AIC) values during model fitting were used for subse-
quent statistical analysis. Additionally, the Euclidean dis-
tances in meters were calculated from each household 
point location to the nearest river [25], the Level III 
Bugoye Health Centre, and the Kasanzi spillway. Distance 
to the level III health centre, the only public facility in the 
sub-county where inpatient care is available, is expected 
to affect the likelihood of care seeking but not risk of 
malaria exposure, and thus not an individual’s uRDT 
result. For this reason, distance to the health centre was 
included in models of inpatient admission only and 
excluded when predicting the spatial distribution of 
malaria risk.

Fig. 1 Elevation map of the Kasanzi, Bunyangoni, and Rwakingi 1A 
villages in the Bugoye sub-county displaying the location of surveyed 
households
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Data analysis
To compare the relative importance of the two predic-
tive datasets, models were fit using three different sets 
of explanatory variables to two outcomes of interest; (i) 
uRDT positivity and (ii) inpatient admission for malaria 
(i.e., severe malaria) within the last year. The explanatory 
variables were divided into environmental or household 
variables, with the exception of latitude and longitude, 
which were included in all models, and distance to level 
III health facility, which was included in all models of 
inpatient admission (Table 1). A third set combined both 

sets of variables. Generalized additive models (GAM) 
with a logit-link function were fit using the mgcv pack-
age [26] in R v. 4.2.0 [27]. Splines were used within the 
model for latitude, longitude, elevation, NDVI, slope, dis-
tance to river, distance to level III health facility, and the 
first two principal components of wealth indicators. In 
addition, a tensor product smooth was included for the 
latitude by longitude interaction, and the flow direction 
sine and cosine interaction. Households were included 
as a random effect smooth to account for correlation in 
observations within a household. To determine the effect 

Table 1 Explanatory variables included in the models

1 Inpatient admission was only used in predicting uRDT risk
2 uRDT result was only used when predicting hospitalization risk

Variable Description Measurement or unit

All

 Latitude Coordinate specifying the north–south position of a point 
on Earth’s surface

Decimal degrees

 Longitude Coordinate specifying the east–west position of a point 
on Earth’s surface

Decimal degrees

 Distance to level III health 
facility (Inpatient admission 
only)

Euclidean distance from the household location to the 
Level III inpatient health facility

Meters

Environmental

 Village Village of the household location Kasanzi, Bunyangoni, or Rwakingi 1A

 Elevation Distance above sea level Meters

 Slope Steepness of the ground surface;tan−1

(

�Elevation

Distance

)

Degrees

 Flow direction Direction of flow out of each cell in a surface raster Compass direction with 0 corresponding to east

 NDVI Difference between near-infrared (which vegetation 
reflects) and red light (which vegetation absorbs)

Range from -1 (bare ground or water) to + 1 (green 
vegetation)

 Distance to nearest river Euclidean distance from the household location to the 
nearest river

Meters

Household

 Age group The age group of the child 1–5, 5–12, or 12–18 years old

 Sex The sex of the child Male or female

 Net If the child slept under bed net the previous night Yes or no

 Door If there is a door in the main room used for sleeping that 
leads outside

Yes or no

 Window If there is a window in the main room used for sleeping Yes or no

 Window screen If there is a window, whether it completely closes or has 
screening or not

Yes or no

 Eaves If there are eaves (space between the roof and wall) in the 
main room used for sleeping

Yes or no

 Eaves screen If there are eaves, whether they have screening or not Yes or no

 Toilet location Where the toilet is located In own dwelling, in own yard or plot, or elsewhere

 Water source The main source of drinking water for household mem-
bers

Piped water or surface water

 Wealth 1 1st Principal component of Household Survey

 Wealth 2 2nd Principal component of household survey

 Inpatient  admission1 If individual was admitted to an inpatient health facility 
for malaria within the last year

Yes or no

 uRDT  result2 Result of the URSDT administered during the survey Positive or negative
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of distance to the Kasanzi spillway, distance to spill way 
was included with the environmental data and mod-
els were refit to individuals residing in Kasanzi. A basis 
dimension (k) of 3 was used to minimize overfitting in all 
models. All p-values are the result of Chi-squared tests, 
using either prop.test or anova functions in R.

All models were initially fit to the full dataset with 
model selection determined by AIC. Models were com-
pared across different buffer region radii and datasets 
and diagnostic plots were visually inspected for violations 
of model assumptions. To evaluate the out-of-sample 
(OOS) predictive ability of each model, cross-validation 
was performed using a random train-test split approach 
with an 80:20 split for 50 iterations. OOS predictions 
are made by training a model on a subset of data, then 
predicting the remaining data, providing an approxima-
tion of how the model performs when predicting novel 
data. The data were randomly split at the household level, 
with all models fit to the same training data. Finally, the 
out-of-village (OOV) predictive ability was determined 
by excluding each village in turn, fitting the models, 
and evaluating the model’s predictive ability within the 
excluded village. Predictive ability was compared based 
on the area under the curve (AUC) of the receiver-opera-
tor curve (ROC) when predicting the test dataset at each 
iteration [28]. These curves were calculated using the 
ROCR package [29].

Ethical considerations
Ethical approval of the study was provided by the insti-
tutional review boards of the University of North Caro-
lina at Chapel Hill (19-1094), the Mbarara University 
of Science and Technology (06/03-19), and the Uganda 
National Council for Science and Technology (HS 2628).

Results
Household survey
Results of the household survey are summarized by vil-
lage in Table 2. The median age of individuals surveyed 
was 18  years (IQR: (6, 35)), and 62.3% were female. 
Demographic characteristics did not differ significantly 
between the villages. Reported LLIN usage for the pre-
vious night was high (> 90%) across all villages, likely 
reflecting the effect of an ongoing mass distribution cam-
paign in 2020. The proportion of houses with screens on 
windows (p = 0.011,) and eaves (p = 0.008) was signifi-
cantly different between villages, as was the proportion of 
houses with water piped into the house (p < 0.001). Fur-
ther, the household survey found the highest rates of par-
asitemia amongst 2 to 12-year-olds in Kasanzi (21.5%), 
followed by Rwakingi 1A (15.9%), and Bunyangoni (4.8%). 
In contrast, children in Rwakingi 1A were the most likely 
to report having been admitted for malaria within the 

last year (42.8%), followed by Bunyangoni (32.6%) and 
Kasanzi (22.6%). While there are significant numbers of 
observations around household variables missing, they 
were exclusively from houses where no children resided 
and did not impact our results.

Predictive modeling
Buffer sizes of 250 m and 1500 m produced the best fit 
based on AIC for uRDT result and inpatient admissions, 
respectively, and were used in subsequent analysis (Addi-
tional file 1: Table S1). Choice of buffer size did not have a 
large impact on the model’s predictive power (Additional 
file  1: Table  S1). The environmental dataset provided a 
significantly better fit to uRDT results (AIC = 362) and 
higher OOS predictive power (AUC = 0.736) compared 
to the household (AIC = 376, AUC = 0.667) and com-
bined (AIC = 367, AUC = 0.671) datasets. For inpatient 
admissions, the combined model provided the best fit 
(AIC = 615) and OOS prediction (AUC = 0.683) com-
pared to the environmental (AIC = 624, AUC = 0.672) 
and household (AIC = 644, AUC = 0.653) datasets. Fig-
ure  2 shows the ROC curves for each model. For OOV 
malaria risk, no dataset performed significantly better 
than a random classifier that naïvely assigns a state (e.g., 
uRDT +) to an individual based solely on an expected 
likelihood an individual is in that state (e.g., observed 
prevalence) (Additional file 1: Fig. S1).

Figure  3 shows the relative risk predicted by each 
model. All models predicted the highest risk of malaria 
infection (uRDT result) in southeastern Rwakingi 1A, a 
lowland region between two rivers that is prone to flood-
ing. Predicted risk decreases from east to west through 
Rwakingi 1A and Bunyangoni as the landscape changes 
from lowlands along rivers to more mountainous areas 
with higher elevations, with the lowest risk predicted 
along the steep hillsides on the western slope of Bunyan-
goni. Similarly, all three models predict moderate to high 
risk in areas of central Kasanzi, an area that contains a 
manmade, concrete culvert used to divert excess water 
from a local hydroelectric plant. In contrast to the envi-
ronmental and combined models, the household model 
predicts large areas of intermediate risk through Rwak-
ingi 1A and northwestern Bunyangoni. This is likely a 
result of the household model smoothing across low-risk 
regions that fall between high-risk regions, since environ-
mental factors are not included.

In contrast to the predicted risk of a positive uRDT 
result, the highest risk of inpatient admission for malaria 
is predicted in north Rwakingi 1A and northeastern Bun-
yangoni. This is likely due to the location of the Level III 
Bugoye Health Centre which is situated in that region on 
the border between Rwakingi 1A and Bunyangoni. A rela-
tively low risk of inpatient admission was seen in Kasanzi, 
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much of Bunyangoni, and south Rwakingi 1A. In contrast 
to the others, the household model predicts a quicker 
shift from high to moderate risk as you move away from 
northern Rwakingi 1A and northeastern Bunyangoni.

Risk factors
The best fitting model for uRDT result, using the environ-
mental dataset with a 250 m buffer, found that the house’s 
latitude (p = 0.026), flow direction (cosine) (p = 0.014), 
and flow direction (interaction) (p = 0.003) were all sig-
nificant predictors of uRDT result. The relationships 
between these variables and uRDT result were found to 
be nonlinear. All estimated smooth response curves are 
shown in Additional file  1: Fig. S2. Within Kasanzi, the 
model found no evidence of an effect of distance from the 
spillway on uRDT results (p = 0.382). When combined 

with information from the household survey, all of these 
variables remained significant except for flow direction 
(cosine). The model using the combined dataset also 
found the latitude by longitude interaction (p = 0.049) 
and the flow direction (sine) (p = 0.035) to be significant 
predictors of malaria risk.

The best fitting model for predicting inpatient admis-
sion within the last year, the combined dataset with a 
1500 m buffer, found that longitude (positive, p = 0.037), 
the latitude by longitude interaction (p = 0.041), slope 
(nonlinear, p = 0.024), flow direction (sine) (nonlinear, 
p = 0.008), and flow direction (interaction) (nonlinear, 
p = 0.029) significantly impacted outcomes. All esti-
mated smooth response curves are shown in Additional 
file 1: Fig. S7. In addition, distance from the spillway was 
found to significantly impact outcomes within Kasanzi 

Table 2 Demographics and key descriptors of the three villages making up the study area

IQR interquartile range, LLIN long-lasting insecticidal net, NDVI Normalized difference vegetation index, uRDT ultrasensitive rapid diagnostic test

Number of missing entries given in italics

Bunyangoni Kasanzi Rwakingi 1A

Environmental

 Elevation (m) (mean, IQR) 1325.09 (1246, 1395) 1419.13 (1383, 1448) 1201.62 (1188, 1214)

 NDVI (mean, IQR) 0.389 (0.365, 0.415) 0.384 (0.361, 0.411) 0.367 (0.352, 0.406)

Population

 Census population 1299 507 774

 Households (n) 186 106 133

 Individuals Surveyed (n) 793 428 407

 Age (median, IQR) 22 (6, 34) 18 (7, 35) 20 (6, 35)

 Female (n, %) 394 (51.6%) 211 (51.5%) 175 (50.1%)

  Missing Sex (n) 30 18 57

 Children (n, %) 395 (51.4%) 206 (50.1%) 170 (48.6%)

  Missing Age (n) 24 17 57

  12–18 (n, %) 25 (3.3%) 21 (5.1%) 10 (2.9%)

  5–12 (n, %) 240 (31.3%) 121 (29.4%) 98 (28.0%)

  < 5 (n, %) 130 (16.9%) 64 (15.5%) 62 (17.7%)

% Sleeping Under LLIN 94.1% 92.7% 94.3%

Home construction

 Windows (n, %) 129 (70.9%) 75 (76.5%) 89 (90.8%)

  Missing (n) 4 8 46

  With screens (n, %) 86 (66.7%) 36 (48%) 61 (77.2%)

 Eaves 80 (43.7%) 36 (36%) 24 (27.9%)

  Missing (n) 3 6 47

  With screens (n, %) 16 (20%) 0 (0%) 2 (8.3%)

 Water piped to house (n, %) 82 (44.1%) 87 (82.1%) 87 (98.8%)

  Missing (n) 0 0 82

Malaria outcomes

 uRDT + (n, %) 15 (4.8%) 37 (21.5%) 19 (16.3%)

  Total (n) 311 172 116

 Admitted w/in last year (n, %) 122 (32.5%) 43 (22.6%) 62 (42.8%)

  Total (n) 375 190 133
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(Environmental Dataset: aRR = 1.04, p = 0.021, Com-
bined Dataset: aRR = 1.07, p = 0.042). See Additional 
file  1: Tables S2–S3 and Additional file  1: Fig. S2-S7 for 
full results.

Discussion
Using the results of a household malaria survey per-
formed across three villages of differing terrain and 
malaria transmission in rural Uganda, the predictive 
ability of models for malaria risk were compared. The 
findings show that the environmental dataset outper-
forms the household dataset at predicting OOS malaria 
risk based on both uRDT result (mean AUC of 0.736 
compared to 0.667) and inpatient admissions (mean 
AUC of 0.672 compared to 0.653). While this is not a 
large difference, the substantially higher cost of collect-
ing the household dataset would heavily favor using the 
environmental dataset. In addition, while the inclusion 
of the household dataset with the environmental data-
set (i.e., combined dataset) improved models’ ability to 

predict OOS inpatient admissions (mean AUC of 0.683 
compared to 0.672), it actually decreased the ability to 
predict OOS uRDT results (mean AUC of 0.671). Impor-
tantly, no model outperformed a random classifier when 
predicting OOV risk (Additional file 1), highlighting the 
difficulty of extrapolating results to new regions, even in 
close proximity.

The datasets used here differed not just in the variables 
they contained, but in the costs associated with obtaining 
them. The environmental dataset contains variables that 
would be expected to predict the presence of vector habi-
tat, such as standing water. This dataset is easily obtained 
from publicly available online tools (e.g., USGS Earth-
Explorer) and would be expected to best predict malaria 
risk if transmission primarily occurred outside the home, 
since it does not account for physical barriers (e.g., win-
dow screening, LLINs) limiting vector access to the indi-
vidual inside the home. On the other hand, the household 
dataset is much more logistically difficult to obtain, 
requiring a detailed survey of households, and would be 
expected to best predict malaria risk if transmission pri-
marily occurred inside the home (e.g., while individuals 
slept). In reality, malaria risk is expected to depend on a 
complex interaction between these variables, with their 
relative importance being location dependent. Therefore, 
it is important for policy-makers to understand the cir-
cumstances within their region, which requires at least a 
preliminary examination of all possible risk factors. Risk 
mapping is a valuable tool for malaria control, as it can 
identify high risk areas and guide surveillance, preven-
tion and treatment activities, resource allocation [30].

The low impact of several household variables is partly 
due to the lack of variation between individuals tested. 
For example, of 608 children surveyed, 568 (93.4%) 
reported sleeping under a LLIN the previous night, while 
567 (93.3%) lived in households with toilets on the prop-
erty. While we did not measure entomological indices, 
one possible explanation for the low predictive power 
of household variables compared to environmental vari-
ables is that the high proportion of children sleeping 
under bed nets could result in a shift in where malaria 
transmission occurs, from within the house to outside, 
[2–5] lessening the ability of household variables to 
predict residual malaria risk. However, it has also been 
suggested that sufficient biting still occurs late at night 
within households with LLINs for transmission to occur 
[4, 5]. The high prevalence of LLIN during this study was 
almost certainly the result of a national LLIN mass dis-
tribution campaign in 2020–21 [40] and was significantly 
higher than observed in the region in January-March 
2020, when coverage was found to be 64.7% [17]. In addi-
tion, utilization of protective measures within the house-
hold (e.g., LLIN and installation of screening) may reflect 

Fig. 2 Receiver operating characteristic (ROC) curves for model fits. 
Result are shown for models predicting uRDT result (left column) 
and Inpatient Admission within the last year (right column) based on 
the environmental (top row), household (center row) and combined 
(bottom row) datasets. ROC curves for out-of-sample (OOS) 
predictions from 50 test-training splits are given (colored lines), along 
with the mean ROC curve (black line), and the mean OOS area under 
the curve (AUC). Diagonal dashed line shows the results of a random 
classifier. The environmental dataset best predicts OOS uRDT test 
results (mean OOS AUC = 0.736), while the combined dataset best 
predicts inpatient admission (mean OOS AUC = 0.683)
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both actual risk and the perceived risk of the homeowner. 
Homeowners may install protective measures in response 
to either a perceived high malaria risk (e.g., living near 
the spillway) or an actual risk (e.g., seeing mosquitoes in 
their homes). Previous work has also found household 
variables to have counter-intuitive relationships with 
malaria risk in the presence of LLINs, [31] including a 

decreased risk of malaria associated with windows tied 
to cooler indoor temperatures and improved LLIN com-
pliance. This association would become stronger if trans-
mission occurs outside the household, where they are no 
longer protective.

The models found that slope and flow direction were 
significant predictors of both measures of malaria risk. 

Fig. 3 Environmental risk predicted by model fits. This is the risk assigned to environmental variables after accounting for any individual (e.g. age 
and sex) or household (e.g. home construction) level variables. Results are shown for models predicting uRDT result (left column) and Inpatient 
Admission within the last year (right column) based on the environmental (top row), household (center row) and combined (bottom row) datasets. 
Predictions are standardized across figures to allow comparison of areas of high and low risk. All three models predict that southeast Rwakingi 1A 
has the highest risk of positive uRDT results, followed with areas of Kasanzi. Results for risk of inpatient admission are more varied, but all models 
agree that the highest risk area is in Northern Rwakingi 1A and western Bunyangoni
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Slope steepness and flow direction affect water accu-
mulation, necessary for larval development, which has 
been previously shown to correlate with higher malaria 
risk [32–34]. In addition, larval habitat is known to be 
more common in locations closer to streams and rivers, 
[32] and proximity to water has been shown to influence 
malaria risk, both within Uganda [35, 36] and in other 
regions [37, 38], even after accounting for household 
construction [39]. Elevation has long been established as 
a predictor of malaria risk with risk decreasing at higher 
elevations [33, 40, 41] while this work finds no associa-
tion of elevation with malaria risk, previous work in the 
region showing that low elevation villages have higher 
prevalence of infection [17, 42] and lower levels of mul-
tiplicity of infection [42] for malaria than high eleva-
tion villages, measures of malaria transmission intensity. 
Finally, it is well-established that distance to a health 
facility is a determinant of healthcare utilization in rural 
settings [43] resulting in individuals delaying or refusing 
to seek care, [44] self-medicating, [45] or seeking care 
outside the formal healthcare system [43]. While this was 
seen when using the environmental dataset, distance to 
the nearest level 3 health facility was not significant when 
household variables were included.

Several others have attempted to predict malaria risk 
using environmental and/or individual- and household-
level variables across a number of settings [33, 46–49]. 
These models typically had similar levels of predictive 
power (AUC = 0.7–0.9). Despite this, there are key differ-
ences in the data included to produce these models when 
compared to the models in this study. Several studies 
similarly use remotely-sensed data to predict risk based 
on environmental variables, [12, 33, 46–49] but few com-
bine this data with individual- and household-level infor-
mation [46, 47]. For those that do use individual- and 
household-level data, few include house construction 
information [47]. Another key difference is that oth-
ers have relied on aggregated malaria prevalence data 
[46], while our analyses used individual household-level 
malaria prevalence information. Thus, this study offers a 
unique set of variables for predicting risk. Additionally, 
few studies have compared the predictive ability of three 
subsets of environmental and individual- and household-
level variables, which this study has done.

While this study provides a unique dataset with which 
to compare the predictive ability of several factors, there 
are several important limitations. First, the dataset rep-
resents a single household survey conducted in Novem-
ber 2020. This excludes the possibility of examining the 
effect of seasonality or short-term weather conditions. 
Second, a single NDVI estimate, derived from December 
2020 data, was used for fitting the environmental mod-
els. NDVI varies over the year, driven by a bi-annual rainy 

season. This variation was not captured in the analysis. 
Third, this study uses uRDT test results and previous 
inpatient admission as outcomes. Given the persistence 
of HRP2, it is possible that infection could have occurred 
anytime in the 6  weeks prior to the uRDT test results 
[50]. Similarly, inpatient admission was assessed over the 
previous year. Thus, the risk factors present at the time 
of the study may not be representative of those present 
at the time the infection occurred. Finally, travel history 
was not collected as part of the household survey. Vary-
ing sizes of buffer regions around the households were 
included to account for areas individuals may visit, but it 
is not possible to adjust for individual-level variation in 
movement without a travel history.

Conclusion
Accurate fine-scale prediction of malaria risk is essen-
tial, especially in regions where malaria persists despite 
high LLIN uptake. Many of these regions have limited 
resources that need to be proactively targeted towards 
areas of the greatest need. There is a growing body of 
work looking at the determinants of malaria risk at 
a household level, but building accurate models still 
proves difficult. Further developing these models not 
only requires technical advancements in modelling, e.g. 
machine learning, but an understanding of the scales, 
implications, and costs of different predictive datasets. 
To this end, the use of easily obtainable remotely-sensed 
environmental data has been compared to a dataset col-
lected as part of a highly detailed household survey when 
predicting two indicators of malaria risk. It was found 
that environmental data were able to better predict OOS 
uRDT positivity and inpatient admission across three 
villages in Uganda and that the addition of household-
level data provided marginal, if any, benefit. This has 
important implications for developing predictive mod-
els in the current environment as it suggests that the use 
of remotely-sensed data may be sufficient and that the 
added benefit of household surveys may not justify their 
costs. However, in areas with low LLIN coverage, or with 
limited environmental variation, household surveys are 
likely still necessary to understand variation in malaria 
risk.
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