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Abstract

Data sharing has enormous potential to accelerate and improve the accuracy of research,

strengthen collaborations, and restore trust in the clinical research enterprise. Nevertheless,

there remains reluctancy to openly share raw data sets, in part due to concerns regarding

research participant confidentiality and privacy. Statistical data de-identification is an approach

that can be used to preserve privacy and facilitate open data sharing. We have proposed a

standardized framework for the de-identification of data generated from cohort studies in chil-

dren in a low-and-middle income country. We applied a standardized de-identification frame-

work to a data sets comprised of 241 health related variables collected from a cohort of 1750

children with acute infections from Jinja Regional Referral Hospital in Eastern Uganda. Vari-

ables were labeled as direct and quasi-identifiers based on conditions of replicability, distin-

guishability, and knowability with consensus from two independent evaluators. Direct

identifiers were removed from the data sets, while a statistical risk-based de-identification

approach using the k-anonymity model was applied to quasi-identifiers. Qualitative assess-

ment of the level of privacy invasion associated with data set disclosure was used to deter-

mine an acceptable re-identification risk threshold, and corresponding k-anonymity

requirement. A de-identification model using generalization, followed by suppression was

applied using a logical stepwise approach to achieve k-anonymity. The utility of the de-identi-

fied data was demonstrated using a typical clinical regression example. The de-identified data

sets was published on the Pediatric Sepsis Data CoLaboratory Dataverse which provides

moderated data access. Researchers are faced with many challenges when providing access

to clinical data. We provide a standardized de-identification framework that can be adapted

and refined based on specific context and risks. This process will be combined with moderated

access to foster coordination and collaboration in the clinical research community.
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Author summary

Open Data is data that anyone can access, use, and share. Open Data has the potential to

facilitate collaboration, enrich research, and advance the analytic capacity to inform deci-

sions. Importantly, Open Data plays a role in fulfilling obligations to research participants

and honoring the nature of medical research as a public good. Leaders in industry, acade-

mia, and regulatory agencies recognize the value in increased transparency and are focus-

ing on how to openly share data while minimizing the safety risks to research participants.

For example, making data open can pose a privacy risk to research participants who have

shared personal health information. This risk can be mitigated using data de-identifica-

tion, a process of removing personal information from a data sets so that an individual’s

identity is no longer apparent or cannot be reasonably ascertained from the data. We

introduce a simple, statistical risk-based framework for de-identification of clinical data

that can be followed by any researcher. This framework will guide open data sharing while

improving the protection of research participants.

Introduction

There are increasing requirements from governments, funders, publishers, and patients to

make clinical research data more widely accessible, as Open Data [1,2,3,4]. The benefits of

Open Data are manifold and include the following: ensures study results are both transparent

and verifiable, enables low-cost secondary analysis of the data, encourages collaboration in the

research community, and enhances public confidence in the scientific process [5,6,7]. This

prompted several new initiatives directed to assisting individual researchers to make clinical

data available, such as The Dataverse Project, Dryad, Vivli and The Yoda Project. [8,9,10].

Despite the myriad of advantages and emergence of open data sharing platforms, most raw

data sets are not openly shared [11]. Major concerns about making data open include the risk

of breaching participant privacy or producing new unanticipated harms, such as stigmatiza-

tion, to individuals or entire groups of participants [12,13].

These concerns can be mitigated by implementing data de-identification, a process of

removing personal information from a data sets such that disclosure does not violate the pri-

vacy of individuals [14]. The Information and Privacy Commissioner of Ontario and the

Health Insurance Portability and Accountability Act (HIPAA) provide guidance to data de-

identification and suggest that variables are to be handled according to classification as direct,

or quasi-identifiers. Direct identifiers, those variables that can uniquely identify an individual,

should be completely removed from the de-identified data sets [14,15]. Quasi-identifiers are

variables that (1) an adversary is assumed to have background knowledge of, and (2) can be

used either individually, or in combination to re-identify an individual in the data set [14]. For

these variables, the risk of re-identification must be weighed against the perceived benefit of

the use of the data. This process can be facilitated by statistical methods to estimate the risk,

and de-identification techniques to reduce the risk to an acceptable level.

A prominent model to evaluate re-identification risk is k-anonymity [16]. This model sug-

gests the probability of re-identifying a record to be the reciprocal of the number of records in

the data set with identical values across quasi-identifiers. A data set is k-anonymous if the

quasi-identifiers for each record are indistinguishable from k-1 other records in the data set.

Two common techniques that can be applied to achieve k-anonymity are generalization and

suppression [16]. Generalization occurs when attribute values for a variable are combined to
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create a broader category that will contain more records. Generalization is performed with

user-defined hierarchies, which are transformation rules that reduce the precision of attribute

values in a stepwise manner. Suppression occurs when values that violate anonymity standards

are deleted from the data set entirely. Application of generalization, followed by suppression,

has been recommended for the biomedical domain [16].

While there exist general guidelines for data de-identification, many researchers lack the

knowledge for effective application to a clinical data sets and there are no readily available

resources to assist this process. We describe a framework for data de-identification using a

clinical example and step-by-step instructions that can be followed by any researcher looking

to comply with funder or publisher requests to make the data open.

Methods

De-identification of the Smart Triage data sets followed a six-step framework (Fig 1). Functional

definitions of key terms used in the framework described are outlined in the S1 Appendix.

Data sets

The Smart Triage data sets was generated from a prospective cohort study conducted between

April 2020 and March 2021 at Jinja Regional Referral Hospital in Jinja, Uganda [17,18]. The

study was reviewed by the institutional review boards at the University of British Columbia in

Canada (ID: H19-02398; H20-00484), the Makerere University School of Public Health in

Uganda and the Uganda National Council for Science and Technology. Children and youth

under 19 years of age seeking treatment for an acute illness at the pediatric outpatient depart-

ment between 8:00 am and 5:00 pm were eligible. Participation was voluntary and written

informed consent was provided by a parent or guardian prior to enrollment. Assent was

required from children above eight years of age. Consent was obtained to make de-identified

data available to other researchers. There were 241 health-related variables, including clinical

signs and symptoms, and anthropometric and sociodemographic information, which were

collected from 1764 participants (S2 Appendix). This data sets was generated to inform devel-

opment of a rapid triage model for children presenting to the emergency department at health

facilities in low-and-middle income countries.

Fig 1. Six-step de-identification framework.

https://doi.org/10.1371/journal.pdig.0000027.g001
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Step 1: Select data release model

A de-identified data sets may be released publicly, semi-publicly, or non-publicly [14]. The

release model plays an important role in determining the amount of de-identification required

as certain models offer more privacy protection than others.

In a public data release, the data sets is available for anyone to download or use without any

conditions [14]. This model provides the greatest availability and least amount of protection.

On the other hand, a non-public data release limits data sets availability to a select number of

recipients. As a condition of receiving the data, recipients must agree to terms and conditions

regarding the privacy and security of the data. This model provides the least availability and

highest amount of protection. In a semi-public data release, the data set is available to anyone

for download; however, as a condition of receiving the data, the recipient must register with

the organization releasing the data set and agree to the restrictions regarding the processing

and sharing of data.

We have selected a semi-public release for the de-identified Smart Triage data sets to be

published on the Pediatric Sepsis Data CoLaboratory (Sepsis CoLab) Dataverse, a platform

that allows for international data sharing among members with built-in access control [19].

Data collaborators must register with the CoLab and sign a memorandum of understanding,

submit a project proposal detailing what they plan to do with the data, and sign a terms-of-use

agreement.

Selection of a semi-public release model was based on best efforts to mitigate risk to partici-

pants while maximizing opportunities for data sharing and reuse. We decided that a public

release model would not be appropriate given that the data sets was derived from a vulnerable

pediatric cohort in a low-income country. On the other hand, a non-public release would con-

siderably reduce data sharing opportunities. For these reasons, a semi-public release has been

the general model adopted by the Pediatric Sepsis CoLab for sharing and distributing data.

Step 2: Classify the variables

The second step involves determining which of the collected variables in the data sets contain

identifying information. Classification of variables as identifiers was established after consider-

ation of three conditions: replicability, distinguishability, and knowability (Table 1) [20]. Vari-

ables that fulfilled at least one of the three conditions were further classified as direct or quasi-

identifiers using a decision tree (Fig 2). Variables that uniquely identified an individual or

have been classified by the HIPAA as a direct identifier were treated as direct identifiers [15].

For the remaining variables, usefulness in data analysis was considered [20]. Variables defined

as useful are those that are essential to the scientific objectives of the study.

To exemplify this, consider a variable containing information about the sex of a participant.

This variable would fulfill conditions of replicability, as participant sex will likely not change

over time and of knowability, as sex is common information likely knowable by an

Table 1. Suggested conditions for classifying variables as identifiers.

Condition Description

Replicability The variable must be sufficiently stable over time so that the values will occur consistently in

relation to the data subject. If a field value is not replicable, it will be challenging for an

adversary to use that information to re-identify an individual.

Distinguishability The variable must have sufficient variability to distinguish among individuals in a data sets.

Knowability An adversary must know the identifiers about the data subject to re-identify them. This assumes

the adversary is an acquaintance of a data subject. If a variable is not knowable by an adversary,

it cannot be used to launch a re-identification attack on the data.

https://doi.org/10.1371/journal.pdig.0000027.t001
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acquaintance (Table 1). This variable is not distinguishable as there were only two response

options, male and female, that were approximately equally prevalent among participants in the

data sets. Next, ask if this variable can uniquely identify an individual and check if it is a

HIPAA direct identifier (Fig 2). It is not possible to directly identify an individual based only

on knowledge of their sex, and it is not in the list of direct identifiers outlined by HIPAA.

Finally, ask if this variable will be useful in data analysis. The Smart Triage data set is used to

develop prediction models, and sex is a predictor variable used in analysis. Thus, we determine

sex to be a quasi-identifier. In another example, take a clinical sign such as wheezing. This vari-

able would not remain stable over time, is a common symptom among individuals in the data

set and thus does not have sufficient distinguishability, and an acquaintance is not very likely

to know whether a child was wheezing at the time of presentation to the hospital. Thus, this

variable, along with many clinical signs and symptoms, would not be considered an identifier.

The variable classification process was to be conducted independently by the two investiga-

tors most familiar with the data, and Cohen’s Kappa was computed to measure degree of

agreement [21]. If the value was above 0.8, consensus was assumed, and the two investigators

met and resolved the classifications on which they had disagreements. If the Kappa threshold

was not achieved, the process was to be repeated with the full group of investigators. The

results were then circulated to the study co-investigators to review and approve the variable

classifications. Finally, the results were reviewed by an expert in research ethics and privacy

compliance.

Step 3: Determine the re-identification risk threshold

For a data sets to be considered de-identified, the data risk must be sufficiently reduced so that

it is less than or equal to the re-identification risk threshold. Determination of an acceptable

re-identification risk threshold required an assessment of the extent to which the release of the

data set would invade an individual’s privacy [14]. Three factors were considered to rank the

level of potential privacy invasion as low, medium, or high: (1) the sensitivity of the data (the

greater the sensitivity of the data, the greater the invasion of privacy), (2) the potential injury

to patients from an inappropriate disclosure (the greater the potential for injury, the greater

the invasion of privacy), and (3) the appropriateness of consent for disclosing the data (the less

Fig 2. Decision tree for classifying variables as identifiers. Adapted from the Committee on Strategies for

Responsible Sharing of Clinical Trial Data [20].

https://doi.org/10.1371/journal.pdig.0000027.g002
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appropriate the consent, the greater the invasion of privacy) [20]. The rank of potential privacy

invasion was translated to a re-identification risk threshold needed to ensure an acceptable

level of risk (Table 2) [14].

Step 4: Quantify data risk

The k-anonymity model was used to measure data risk. Each set of records with indistinguish-

able quasi-identifiers is called an equivalence class, of size k. The model assumes an upper

bound of 1/k on the probability of re-identification for each individual record [16,22,23]. This

probability applies under two conditions: (1) the adversary (an individual who is attempting to

use the data for a nefarious purpose) knows someone in the real world and is trying to find the

record that matches that individual, or (2) the adversary has selected a record in the data sets

and is trying to find the identity of that person in the real world [20]. A data sets is k-anony-

mous if each of its records cannot be distinguished from at least k-1 records and the k value

required to consider a data set de-identified can be derived by taking the reciprocal of the re-

identification risk threshold (Table 2). In a semi-public release model, the data risk is equal to

the maximum re-identification risk across all records with the assumption that there will be a

re-identification attack [14].

Step 5: De-identify the data

All de-identification procedures were performed using R (3.5.1) [24].

Preparing quasi-identifiers

Quasi-identifiers were isolated and summarized, each in terms of the total number of response

values and the number of distinct responses. Frequency tables were used to summarize cate-

gorical variables to assess prevalence of each distinct response value within a variable, and to

help inform creation of generalization hierarchies. Quasi-identifiers with less than 10% of par-

ticipant responses were removed from the de-identified data set. Those that were captured in

other variables, or not relevant for analysis were also removed. Finally, variables containing

duplicate information were merged. The remaining quasi-identifiers were labelled based on

their function in the development of a logistic triage model as one of (a) predictor variable, (b)

outcome variable, or (c) supplementary variable (not included in modeling). The labelled

quasi-identifiers were then assigned a relative numerical ranking based on importance in

modelling. Three rounds of generalization hierarchies were created for the categorical

variables.

De-identification of quasi-identifiers

De-identification was conducted using the R package sdcMicro, which enables application of

statistical disclosure control methods to the data to decrease re-identification risk of the data

[25]. A cycle that applied generalization, followed by suppression was used to determine the

optimal de-identification model (Fig 3). The first generalization hierarchy was applied to

Table 2. Acceptable risk thresholds for different levels of privacy invasion suggested by the Ontario Information

and Privacy Commissioner.

Invasion of Privacy Re-identification Risk Threshold k-Anonymity Equivalent

Low 0.1 10

Medium 0.075 15

High 0.05 20

https://doi.org/10.1371/journal.pdig.0000027.t002
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applicable variables in a stepwise fashion, where the quasi-identifier with the lowest impor-

tance ranking was de-identified first. At each step, the number of records violating k-anonym-

ity was evaluated. If k-anonymity violations remained after application of the first

generalization hierarchy, suppression was applied to meet the requirement. The suppression

algorithm was based on importance ranking of variables to prioritize preservation of model-

ling variables. It was decided that acceptable suppression limits were 5% and 10% for model-

ling and supplementary variables, respectively. If the number of suppressed values for a given

variable exceeded the suppression limit, the above process was undone and repeated using

generalization hierarchies two, and if needed, three. The model that requires the least amount

of generalization for suppressions to be contained within the limit would be considered

optimal.

Step 6: Test data utility

The purpose of this data sets is to develop rapid triage models based on need for hospital

admission, and thus assessment focused on evaluating model integrity. Missing data and the

distribution of response values among quasi-identifiers were compared before and after sup-

pression. Univariate logistic regression with 10-fold cross validation was applied to quasi-iden-

tifiers labelled as predictor variables on both the original and de-identified data sets. The

outcome measure for modelling was defined as a positive response on either the admitted or

readmitted variable. The magnitude and direction of the regression coefficients, as well as the

significance of each variable in predicting the outcome were compared.

Results

Classification of variables

There were 22 (9.1%) disagreements found among the two independent variable classifica-

tions; however, the Cohen’s Kappa test demonstrated an acceptable degree of similarity

(k = 0.83). The classification consensus revealed 15 direct identifiers, 53 quasi-identifiers, and

173 non-identifying variables (S2 Appendix). In accordance with the Safe Harbour guidelines

outlined by HIPAA, all direct identifiers were removed from the de-identified data set [15].

Fig 3. De-identification schematic. H1-H3 refer to consecutive generalization hierarchies. Numbers assigned to

quasi-identifiers correspond to relative importance ranking.

https://doi.org/10.1371/journal.pdig.0000027.g003
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Data risk and re-identification risk threshold

Data were collected from children presenting with an acute illness. Health information from

these children can be considered sensitive, however the risk of potential injury from disclosure

was considered to be low. Due to the absence of electronic health records within LMIC health-

care systems, adversaries would have very limited public data sources. At Jinja Hospital in par-

ticular, patient information is hand recorded in notebooks and stored only for admitted

children, making data sharing with public registries unfeasible. Additionally, informed consent

approving disclosure of de-identified health information for the purpose of data sharing was

obtained prior to enrollment. With consideration of the above information, the level of privacy

invasion was ranked as medium, which corresponds to a re-identification risk threshold of

0.075 or a k-anonymity equivalent of 15 [14]. The data risk, a reflection of the maximal re-

identification risk across all records, was found to be 100%. This means that at least one record

in the Smart Triage data sets had a unique set of quasi-identifier values, different from any

other record in the data sets (k = 1). The goal of the de-identification was thus to apply general-

ization and suppression until k = 15, meaning all records have at least 14 other records with

identical quasi-identifier values.

Quasi-identifiers

Of the 53 quasi-identifiers, 45 were removed from the de-identified data sets (S2 Appendix).

Many quasi-identifiers (N = 24) were removed due to having too few participant responses to

confer indistinguishability in the data sets (S3 Appendix) (Table 3). Some variables were

merged with another variable or removed as the information was captured elsewhere (N = 11).

For example, date of admission recorded by the study team and date of admission reported by

caregiver were merged into a single variable. Further, month of birth and year of birth vari-

ables were removed as information was captured in the calculated age variable. Variables were

also removed if they contained more than 100 unique response values with few counts each

(N = 7), or if the information was not reliable (N = 2) or relevant for data analysis (N = 1).

There were 8 remaining quasi-identifiers that required further de-identification (Table 4).

Generalization hierarchies were created for the four categorical quasi-identifiers (Table 5).

De-identification results

Results indicated that the optimal model for de-identification of this data sets was use of the sec-

ond generalization hierarchy, followed by suppression. After applying the second generalization

hierarchy, there remained 384 (21.9%) records violating 15-anonymity (Table 6). The amount

of suppression required to address these violations were well within the 5% limit for modelling

variables, however ‘district’, which had 272 (15.5%) suppressions, exceeded the 10% limit for

supplementary variables (Table 7). This variable continued to exceed the limit even after appli-

cation of the third generalization hierarchy as 235 (13.4) suppressions were required.

Table 3. Reasons for removal of quasi-identifiers from the de-identified data sets (N = 45).

Reason for Removal N

Too few data collected (<10% of participant responses, or <1% of positive responses). 24

Information captured in another, less identifying variable. 7

Contains sensitive, re-identifying information (>100 unique responses). 7

Duplicate variable to be merged with the original variable. 4

Self-reported and unlikely to be reliable or useful in data analysis. 2

Not relevant to data analysis. 1

https://doi.org/10.1371/journal.pdig.0000027.t003
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Table 4. Summary of quasi-identifiers requiring further de-identification.

Variable

(type)

Rank Values Frequency

(%)

Missing (%)

Admitted

(outcome)

1 1.No

2.Yes

1139 (76.5)

411 (23.5)

14 (0.8)

Readmitted

(outcome)

2 1.No

2.Yes

1672 (97.6)

41 (2.4)

51 (2.9)

Age in years

(predictor)

3 Mean (sd): 24.3 (28.6)

min�med�max:

0� 13.8� 208.4

IQR (CV): 23 (1.2)

620 distinct values 8 (0.5)

Sex

(predictor)

4 1.Male

2.Female

849 (48.3)

908 (51.7)

7 (0.4)

Length of stay in days

(predictor)

5 1. 0

2. 1

3. 2

4. 3

5. 4

6. 5

7. 6

8. 7

9. 8

10. 9

11. 10

12. 11

13. 12

14. 13

15. 14

16. 15

17. 24

18. 28

1359 (77.8)

37 (2.1)

84 (4.8)

72 (4.1)

79 (4.5)

40 (2.3)

22 (1.3)

20 (1.1)

8 (0.5)

5 (0.3)

6 (0.3)

3 (0.2)

1 (0.1)

2 (0.1)

5 (0.3)

1 (0.1)

1 (0.1)

1 (0.1)

18 (1.0)

Admission diagnosis

(supplementary)

6 1. Malaria

2. Pneumonia

3. Bronchiolitis

4. URTI (cold, flu, etc.)

5. Reactive airway disease

6. Gastroenteritis/diarrhoea

7. HIV/AIDS

8. CNS infections

9. Sepsis

10. Neonatal Sepsis

11. Other

12. Not applicable

(wasn’t admitted)

150 (8.6)

42 (2.4)

2 (0.1)

2 (0.1)

14 (0.8)

7 (0.4)

1 (0.1)

1 (0.1)

74 (4.3)

6 (0.3)

98 (5.6)

1339 (77.1)

28 (1.6)

Urgent referral

(supplementary)

7 1.No

2.Yes

1651 (94.3)

99 (5.7)

14 (0.8)

District

(supplementary)

8 1. Buikwe

2. Buvuma

3. Bugiri

4. Iganga

5. Jinja

6. Kamuli

7. Kayunga

8. Luuka

9. Mayuge

10. Namutumba

11. Other

466 (26.5)

4 (0.2)

1 (0.1)

12 (0.7)

1151 (65.4)

22 (1.2)

19 (1.1)

12 (0.7)

46 (2.6)

2 (0.1)

25 (1.5)

4 (0.2)

sd, standard deviation; min, minimum; med, median; max, maximum; IQR, interquartile range; CV, coefficient of variation.

https://doi.org/10.1371/journal.pdig.0000027.t004
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Since suppression limits for modelling variables were met using the second generalization

hierarchy, it was deemed impractical to further generalize variables in exchange for a small

reduction in the number of required suppressions (Table 7).

Data utility

Following suppression, prevalence of missing values continued to be minimal among model-

ling variables (Table 7). In addition, the distribution of response values for modelling variables

pre- and post-suppression were within 1% of each other (Table 8). Considerable data loss was

evident among supplementary variables and the distribution of response values pre-and post-

suppression were variable (Tables 7 and 8).

Univariate logistic regression demonstrated that associations between the three predictor

variables and outcomes were similar pre-and-post data de-identification (Table 9). In both

cases, males were significantly less likely to have a positive admission outcome compared to

females. Pre-and-post de-identification odds ratios showed overlapping confidence intervals.

Length of stay was not significantly associated with the positive admission outcome at any

time. Finally, both in the original and de-identified data set, increasing age was associated with

a decrease in the odds of having a positive admission outcome. This association was significant

in the original data set, but only for children aged three and older in the de-identified data set

where age was transformed into categorical bins.

Discussion

Summary

We have proposed a standardized framework for the de-identification of data generated from

cohort studies in children in a LMIC. In an effort to balance protection of patient privacy and

Table 5. Generalization hierarchies for categorical quasi-identifiers.

Variable Round 1 Round 2 Round 3

Age 5-month interval; 60+ 12-month interval; 60+ [0–12), [12–24), [24,36), [36,60); 60+ months

Length of stay 1. 0 days

2. 1–2 days

3. 3–4 days

4. 5–6 days

5. 7+ days

1. 0 days

2. 1–6 days

3. 7+ days

1. 0 days

2. 1+ days

Admission diagnosis 1. Malaria

2. Pneumonia and RTIs (2–5)

3. Sepsis (9,10)

4. Gastroenteritis/diarrhoea

5. Other (7,8,11)

1. Malaria

2. Pneumonia and RTIs (2–5)

3. Sepsis (9,10)

4. Other (6–8,11)

1. Malaria

2. Sepsis (9, 10)

3. Other (2–8,11)

District 1. Jinja

2. Buikwe

3. Other

1. Jinja

2. Other

1. Jinja

2. Other

https://doi.org/10.1371/journal.pdig.0000027.t005

Table 6. K-anonymity violations at compounding steps of generalization in order of increasing variable importance for the three hierarchical rounds, N (%).

Generalization Hierarchy: No de-identification +District +Admission diagnosis +Length of hospitalization +Age

Round 1 1750 (100.0) 1749 (99.9) 1749 (99.9) 1749 (99.9) 649 (37.1)

Round 2 1750 (100.0) 1749 (99.9) 1749 (99.9) 1749 (99.9) 384 (21.9)

Round 3 1750 (100.0) 1749 (99.9) 1749 (99.9) 1749 (99.9) 344 (19.7)

This table demonstrates the number of records violating k-anonymity at each step of each round of generalization. The “+” sign indicates that generalization has been

applied for this variable.

https://doi.org/10.1371/journal.pdig.0000027.t006
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data integrity, direct identifiers were removed from the data sets and a de-identification model

using generalization followed by suppression was applied to quasi-identifiers. The utility of the

de-identified data was demonstrated using a typical clinical regression example. Use of the R

package sdcMicro allowed for flexibility in manipulating variables, and ease of monitoring and

evaluating de-identification progress at each step of each generalization-suppression combina-

tion [25].

The risk of re-identification of individual participants would be unacceptable with the sup-

pression of direct identifiers alone. Statistical approaches to de-identification are recom-

mended for mitigating re-identification risk associated with quasi-identifiers [14]. Two widely

accepted privacy models are k-anonymity and differential privacy [26]. K-anonymity is used

to prevent re-identification of individuals made possible by record linking attacks while the

differential privacy provides a probabilistic guarantee that the inclusion of an individual in a

data set will not alter the outcome of a query to that data sets [27]. There are many trade-offs

between these techniques [28,29]. In the case of record-level data release, applying differential

privacy would require employing a large amount of noise to obtain a meaningful privacy guar-

antee. As a result, the analytical utility of the output would be poor [30,31]. Thus, k-anonymity

was deemed preferable for this microdata set.

Numerous methods have been proposed for reducing the risk of re-identification. There

are two broad types of statistical disclosure control techniques that can be used to satisfy the

parameters of the selected privacy model: i) non-perturbative techniques, such as generaliza-

tion and local suppression, which suppress or reduce the detail without altering the original

data, and ii) perturbative techniques, such as adding noise, post-randomization method, or

micro-aggregating and shuffling, which distort the original data sets before release [32]. When

dealing with health data, non-perturbative methods are favoured because the truthfulness of

the data is preserved and the impact on data analysis is more easily evaluated [33].

In the described framework we chose to use the k-anonymity model with a combination of

generalization and suppression. The focus of de-identification was to maximize data integrity

in the context of the development and validation of risk prediction models while firmly pro-

tecting patient privacy. Thus, we favoured a de-identification scheme involving generalizations

that satisfy k-anonymity with minimal suppression of key modelling variables, while also

Table 7. Records per variable suppressed to meet 15-anonymity requirement after each round of generalization,

N (%).

Variable Post-Round 1 Post-Round 2 Post-Round 3

Admitted

(outcome)

1 (0.1) 0 (0.0) 0 (0.0)

Readmitted

(outcome)

2 (0.1) 3 (0.2) 2 (0.1)

Age

(predictor)

30 (1.7) 18 (1.0) 16 (0.9)

Sex

(predictor)

76 (4.3) 32 (1.8) 18 (1.0)

Length of stay

(predictor)

137 (7.8) 39 (2.3) 42 (2.4)

Admission diagnosis

(supplementary)

269 (15.4) 115 (6.6) 80 (4.6)

Urgent referral

(supplementary)

267 (15.3) 161 (9.2) 121 (6.9)

District

(supplementary)

456 (26.1) 272 (15.5) 235 (13.4)

https://doi.org/10.1371/journal.pdig.0000027.t007
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minimizing generalizations at the expense of suppressing supplementary variables. To further

increase data utility, generalization was applied to quasi-identifiers in a stepwise fashion in

order of increasing importance in modelling and data was evaluated at each step to determine

the earliest point of k-anonymity achievement. Importance ranking of quasi-identifiers was

also applied in suppression to minimize suppression of key modelling variables.

Data utility

The Smart Triage data sets was generated to inform development of rapid triage models.

Thus, it was important to maximize integrity of the modelling variables and minimize dis-

tortions of associations between predictor and outcome variables. The modelling outcomes,

admitted and readmitted, had a total of 0 (0.0%) and 3 (0.2%) suppressions respectively in

the de-identified data set. Suppressions among predictor variables were also minimal with

18 (1.0%) for age, 32 (1.8%) for sex, and 42 (2.4) for length of stay. For these variables, the

Table 8. Distribution of response values for variables pre-and-post suppression.

Variable Pre-Suppression, N (%) Post-Suppression, N (%)

Admitted (outcome)

Yes 411 (23.49) 411 (23.49)

No 1339 (75.61) 1339 (75.61)

Readmitted (outcome)

Yes 41 (2.39) 38 (2.22)

No 1671 (97.61) 1671 (97.78)

Age in years (predictor)

0 787 (45.00) 786 (45.41)

1 439 (25.10) 439 (25.36)

2 157 (8.98) 151 (8.72)

3 111 (6.35) 108 (6.24)

4 72 (4.12) 68 (3.93)

5+ 183 (10.46) 179 (10.43)

Sex (predictor)

Female 846 (48.34) 830 (48.31)

Male 904 (51.66) 888 (51.69)

Length of stay in days (predictor)

0 1359 (77.84) 1340 (78.50)

1–6 334 (19.13) 327 (19.16)

7+ 53 (3.04) 40 (2.34)

Admission diagnosis (supplementary)

Malaria 150 (8.64) 122 (7.53)

Pneumonia and other RTIs 47 (2.71) 26 (1.60)

Sepsis 80 (4.61) 60 (3.70)

Other 120 (6.91) 74 (4.57)

Not applicable 1339 (77.14) 1339 (82.60)

Urgent referral (supplementary)

Yes 99 (5.66) 9 (0.57)

No 1649 (94.34) 1578 (99.43)

District (supplementary)

Jinja 1148 (65.60) 1041 (70.43)

Other 602 (34.40) 437 (29.57)

https://doi.org/10.1371/journal.pdig.0000027.t008
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distribution of response values before and after suppression are within 1% of each other.

This suggests that the integrity of these variables remains intact. Univariate regression

revealed the sex and length of stay predictors to have similar associations to the outcome in

the original and de-identified data sets. Age, however, was found to be significantly associ-

ated to the admissions outcome in the original data set, but only for children aged three and

older in the de-identified data set. This resulted from the transformation of age as a contin-

uous variable in the original data sets to a categorical variable in the de-identified data set.

These transformations are generally not advised due to the risk that variables may lose pre-

dictive value and that associations with the modelling outcome may be distorted [34]. Gen-

eralization was applied nonetheless in the interest of protecting patient privacy and to

achieve k-anonymity with reasonable suppression. The supplementary variables were gen-

erously suppressed to maximize integrity of the modelling variables. This was acceptable as

it allowed for at least some supplementary information to be retained, but not at the expense

of compromising the development of prediction models.

Limitations

Though many quasi-identifiers were removed from the data sets, the quantity of collected data

for these variables was not sufficient for meaningful analysis and the rarity in positive

responses presented a high risk of privacy invasion (Table 3). The low quantity of responses

for many of these quasi-identifiers can be attributed to the limited applicability to a small sub-

set of participants. Using branching survey logic, these variables were not collected for most

participants. Alternatively, some variables by nature were associated with few occurrences. For

example, the removal of mortality as an outcome was inevitable due to the small number of

cases with this outcome (N = 10) (S3 Appendix). There would also be a high likelihood of link-

ing this outcome to other data sources. There does not appear to be a reasonable method to

generalize or suppress this outcome that would reduce the risk of re-identification. Increasing

the sample size and using multiple undisclosed locations would allow us to reduce the risk of

re-identification in the future.

Table 9. Results from univariate logistic regression pre-and-post de-identification.

Variable Regression Coefficient p-value Odds Ratio (95% CI)

Original Data

Sex (Male) -0.118 <0.05 0.844 (0.792, 0.985)

Age -0.107 <0.05 0.988 (0.812, 0.998)

Length of stay 8.14 0.971

De-identified data

Sex (Male) -0.198 <0.05 1.20 (1.07, 1.34)

Age in years (Baseline = 0)

1 -0.025 0.671

2 -0.045 0.588

3 -0.121 <0.05 0.886 (0.800, 0.984)

4 -0.026 <0.05 0.975 (0.877, 1.09)

�5 -0.054 <0.05 0.947 (0.849, 1.06)

Length of stay in days (Baseline = 0)

1–6 8.760 0.970

�7 3.359 0.989

CI, Confidence Interval

https://doi.org/10.1371/journal.pdig.0000027.t009
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A second limitation is that integrity of the supplementary variables was significantly

reduced to preserve the modelling variables. While this was necessary in order to maximize

data integrity for the primary purpose of prediction modelling, it does reduce opportunities

for secondary analysis where specific focus may be placed on suppressed data. For example,

researchers wishing to do a deeper dive into urgent referrals should be aware that this de-iden-

tified data set may not be suitable. This could highlight a need for a new collaborative agree-

ment between investigators so that the original data set can be used for such analyses.

The generalization of age was a particular concern. The physiology of children changes rap-

idly following birth with rapid transitions occurring in the first year or two of life [35]. The

loss of the number of months of age in these children is potentially limiting. The granularity in

the data was lost due to generalization. This was required because of the small number of chil-

dren in the data set of the same age. The fact that the date of birth had been generalized to age

at the time of triage had already provided a significant degree of risk reduction that was not

considered. While age is typically considered to be a quasi-identifier, in a study that has a dura-

tion of many months or years, converting the date of admission and date of birth provides gen-

eralization if these dates are suppressed and the date of admission could be anywhere within

the study period. The same would be true of other time intervals such as length of stay. Further,

as all variables classified as dates in our study were converted into time intervals, we provided

limited guidance on how to de-identify these types of variables using generalization and

suppression.

Another limitation was the difficulty in assessing data utility. In a complex data sets gener-

ated to develop prediction models, where variables are of varying type and held at different lev-

els of importance, there are no broadly accepted metrics that can be applied to judge the

results [36]. Additionally, no existing de-identification algorithm provides both perfect privacy

protection and perfect analytic utility. Thus, selection of an acceptable re-identification risk

threshold to balance the probability of re-identification with the amount of distortion applied

to the data was based on subjective assessment of privacy risk. It is impossible to anticipate all

potential unethical future uses of data that could lead to significant harms such as discrimina-

tion or stigmatization of individuals or groups. It is for this reason that the standardized

approach proposed here should be understood as one tool used to manage privacy risks within

a greater holistic data governance framework.

Conclusion

We presented a standardized framework for de-identification of health data using statistical

disclosure control methods. This was in effort to reduce barriers to Open Data sharing by

demonstrating the possibility of maintaining data integrity while protecting patient privacy.
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