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Abstract

Artificial intelligence (AI) and machine learning (ML) have an immense potential to transform

healthcare as already demonstrated in various medical specialties. This scoping review

focuses on the factors that influence health data poverty, by conducting a literature review,

analysis, and appraisal of results. Health data poverty is often an unseen factor which leads

to perpetuating or exacerbating health disparities. Improvements or failures in addressing

health data poverty will directly impact the effectiveness of AI/ML systems. The potential

causes are complex and may enter anywhere along the development process. The initial

results highlighted studies with common themes of health disparities (72%), AL/ML bias

(28%) and biases in input data (18%). To properly evaluate disparities that exist we recom-

mend a strengthened effort to generate unbiased equitable data, improved understanding of

the limitations of AI/ML tools, and rigorous regulation with continuous monitoring of the clini-

cal outcomes of deployed tools.

Author summary

New technologies and tools for Artificial intelligence (AI) and machine learning (ML) in

healthcare are continually advancing, leading to new digital tools that can improve the

delivery of care. However, as these computer-based tools improve, they become more

complicated and less transparent. These tools use gathered data from medical practice or

clinical outcomes to build mathematical models to make recommendations that assist cli-

nicians to treat patients. Unfortunately, when the data going in is biased, then the digital

tools themselves are corrupted to perpetuate or even amplify the health disparities, leading

to worsened inequity against already vulnerable populations. Data poverty describes when
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certain people groups are underrepresented in generated health data, so that they may

actually be harmed by these new tools. Our review looks at the established state of research

into health data poverty. We attempt to characterize the scope and findings of these

papers, assess the challenges within the field, and draw some recommendations on how to

begin to approach the difficult problem of health data poverty.

Introduction

While many laud the potential for technology improving the quality and delivery of healthcare,

we must be vigilant to avoid exacerbating existing health disparities [1]. One area of focus

toward addressing these inequalities is to resolve the expanding problem of health data pov-

erty, defined as "the inability for individuals, groups, or populations to benefit from a discovery

or innovation due to insufficient data that is adequately representative" [1]. Utilizing non-

inclusive health data from underrepresented populations in clinical applications often leads to

misapplied generalizations and worse outcomes [1]. Furthermore, continuing to build technol-

ogies based on marginalized datasets perpetuate or can even amplify disparities rather than

mitigating them [2]. Despite technological advancements, communities with lower health out-

comes often continue to have poorer outcomes regardless of the improvements in technology

[3]. This disconnect is exemplified in the burgeoning application of artificial intelligence and

machine learning (AI/ML) in healthcare, where studies have demonstrated that biases can be

driven by discrepancies or gaps in the available healthcare data [4–6].

The hope of AI/ML

Within digital health, advancements in AI/ML leverage computer-based mathematical models

to analyze collected health data and predict outcomes [7]. These applications have an enor-

mous potential to transform healthcare, leveraging vast amounts of health data and steering

healthcare away from anecdotal medicine toward enhanced evidence-based care [8]. AI/ML

may provide researchers and clinicians with additional tools necessary to administer high-per-

formance medicine with greater efficiency, better workflow, and improved prediction of health

outcomes [9–11] AI algorithms have been applied across a myriad of specialties, including

radiology, pathology, dermatology, intensive care medicine, oncology, genetics, and ophthal-

mology [12–20]. Some algorithms, in controlled settings, have been shown to outperform

trained clinicians in detecting pneumonia, breast cancer, age-related macular degeneration,

and diabetic retinopathy [21–23]. While the algorithms and tools have been developing at a

rapid pace, the true effectiveness and value of AI/ML depend directly on the quality of the

input data [24].

The pervasiveness of bias in healthcare

Bias is insidious and infiltrates healthcare delivery often without realization. While most clini-

cians attempt to avoid explicit biases, implicit biases are introduced unconsciously and sys-

temic biases are embedded within our institutions and systems [25–27]. Understanding the

presence of bias throughout healthcare is critical to addressing the potential disparities in the

application of AI/ML technologies [28,29]. While computers are often characterized as “unbi-

ased machines”, they will most often perpetuate or amplify existing biases in the source data

[30,31]. On the contrary, attempts to use AI to mitigate bias by identifying implicit partiality in

clinical decision-making can yield positive results, but requires precaution and oversight to

PLOS DIGITAL HEALTH Health data poverty amplifies existing health disparities: A scoping review

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000313 October 12, 2023 2 / 16

https://doi.org/10.1371/journal.pdig.0000313


continually monitor the influence of bias [31]. If we ignore the issue with diversity at all levels,

including those who are tasked with building the various AI technologies, we will further mag-

nify the effect of problems created by implicit and explicit bias on these healthcare

advancements.

The digital health data divide

Commonly, clinical interventions have been designed for prevailing populations. Indeed, risk

scores that account for race may over- or under-estimate risk assessments [32], with obvious

consequences. Meanwhile, clinical diagnostics are defined for the few. As an example, the rar-

ity of darker skin in dermatology can lead to the underdiagnosis of various diseases [33]. Con-

sidering that genetic data often does not include minorities, these populations are left

underrepresented and, therefore, without access to personalized treatment or diagnostic tools

[17,34].

Health outcomes are further complicated by the reality that certain clinical devices under-

perform at creating equitable assessments across race, sex, and other physical differences. For

example, a study on pulse oximeter accuracy identified that darker skin overestimated arterial

oxygen saturation, resulting in differences in treatment interventions [35]. Furthermore, a

study on total hip arthroplasty outcomes documented that at one-year follow-up, women were

more likely than men to report needing assistance in daily activities [36]. Additional data and

research is necessary to account for genetic and physiological differences. Inaccurate technol-

ogy development, which incorporates known and unknown biases, can have immense negative

implications on diagnoses, treatments, and therapies implemented by clinicians and develop-

ers. As such findings continue to be revealed, the health gap in marginalized communities will

only widen as they bear the burden of receiving treatments designed without proper adjust-

ments for their unique community needs.

Health data is increasingly being generated at an astounding pace, with electronic health

systems recording clinical notes and processes captured by clinicians and administrators at

practically every stage of the care process. Data, such as those from monitors and imaging, is

now automatically generated by devices and machines [7]. In recent years, the innovation of

wearable devices and mobilized healthcare has provided the opportunity to collect large

amounts of data outside of the hospital with the aim of implementing customized digital

healthcare solutions. [37] These data are extremely valuable for learning and process improve-

ment, especially when made openly available to clinicians and researchers [38].

While the expansion of health data is accelerating, the growth is not evenly distributed. The

majority of available digital data are from wealthy regions with expanding adoption of elec-

tronic health records (EHR) and devices [39]. This is leading to a widening data divide, where

large segments of populations, particularly the poor and those with low accessibility, are not

captured digitally and are underrepresented in the resulting data sets [1].

The utility of AI/ML in healthcare seems boundless, but this area of data science must be

approached with caution. Researchers tasked with collecting and interpreting data have an eth-

ical responsibility to ensure that the development strategy for designing models and systems is

both efficient and equitable.

Objectives

This scoping review aims to investigate the landscape of existing research in the area of health

data poverty. Our aim is to evaluate the current state of health data used in building AI models

and the potential role it plays in exacerbating or alleviating existing disparities. We hope to
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assess potential exacerbating factors that contribute to data poverty, identify why these barriers

exist, and recommend how they might be alleviated.

Methods

A comprehensive search of the literature was constructed and performed by a qualified medi-

cal librarian (RSH). Medline (Ovid), Embase (Ovid), Scopus, and Google Scholar were queried

using both natural language and controlled vocabulary terms for data poverty, digital health,

artificial intelligence, vulnerable/underrepresented populations, bias, inequities, and health

outcomes (S1 Appendix).

The results were then assessed and scored by the researchers on quantitative and qualitative

measures. The assessment was completed by the group of authors, randomly assigned with

crossover assignments. To reduce internal biases, every article was independently analyzed by

at least two reviewers, and the final score was achieved based on consensus in discordant cases.

We extracted relevant data, including 1) type of article, 2) publication year, 3) country where

research was conducted, 4) nationality of primary authors, and 5) the study and author coun-

try income classification according to the World Bank classification [40]. Each study was then

scored by the reviewers (on a 0–5 scale), attuning to subjective appropriateness to the topic of

data poverty. In this review, we included the articles with reviewers’ scores of 3, 4, or 5.

Results

While the topic of data poverty in healthcare is uncommon, our initial search produced a fair

number (n = 186) of published papers. Our first screening filtered these papers based on

adherence to data poverty: whether they directly acknowledged data poverty or indirectly

addressed a cause or effect of AI-exacerbated biases. The 112 eligible papers underwent a sec-

ond screening, where only original studies (n = 67) were considered for inclusion in the scop-

ing review. Reviews and opinion papers were assessed and included for reference and

discussion but excluded from the analysis of this review (Fig 1).

Categories

To characterize the papers, reviewers assigned up to three relevant topic categories for each

paper (Table 1). The main categories were:

• AI/ML Bias—These studies identified biases that were unintentionally perpetuated or ampli-

fied by AI algorithms.

• Data bias—These studies identified biases existing in the input data used to build models,

such as missing data and its causes.

• Disparities—These studies looked at how various disparities, such as racial, socioeconomic,

rural/urban, age, etc., were reflected in digital technology applications.

• Population Selection—These studies evaluated population selection, often by identifying

under or over-representation of certain groups.

• Clinical Outcomes—These studies evaluated the direct effects and clinical outcomes of digital

technology applications in healthcare.

Subcategories that detailed a particular aspect of the parent category were identified for

most of the papers, but were deemed to not warrant a separate main category label. These were

useful in highlighting the scope and diversity of the causes or impacts of the instigating factors.
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The majority of the papers focused on disparities, which were usually racial or socioeco-

nomic [41–45]. An important topic within this category is accessibility, which is more difficult

to measure, and reflects the patient’s inability to access, utilize, or afford appropriate care. It

also relates to physicians who serve communities that lack access to necessary equipment for

AI/ML healthcare technology (e.g., rural communities) [44,46].

Data bias is the most straightforwardly related to data poverty. Biased data results in biased

algorithms, which may be attenuated to a degree with careful tuning and continuous monitor-

ing [18,47–52]. The sources of biased data are manifold. Most common is the disproportionate

Fig 1. Flowchart of results.

https://doi.org/10.1371/journal.pdig.0000313.g001

Table 1. Results of categorization of studies.

Categories # of Studies Potential Subcategories

Disparities 48 Racial

Rural/urban

Socioeconomic/poverty

Age/Sex/Gender

Accessibility

AI/ML Bias 19 Algorithmic or modeling bias

Errors in machine/deep learning

Data bias 12 Biased data source

Missing data

Transparency

Patient mistrust

Population Selection 11 Representation

Clinical Outcomes 2 Errors diagnosis

Errors in predicting health risks

https://doi.org/10.1371/journal.pdig.0000313.t001
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representation of wealthy or majority populations and the corresponding underrepresentation

of minority populations [53]. Missing data can sometimes be accounted for in building AI

models, however, this is only marginally effective when the missing data is similar to the exist-

ing data [47,51,52]. Missing data often reflects the issue of accessibility: poorer populations

who do not have access to healthcare cannot contribute data. Lack of trust may also be a factor,

where members of historically disadvantaged groups may be reluctant to share their data or

participate in studies [47].

Specialty

Where possible, the general clinical specialty was recorded and tallied (Table 2). In this review,

the papers fell under thirteen specialties. Data science articles were the most prevalent, fol-

lowed by social science and public health. These papers generally looked at registry data or

general hospital data, without a specific medical specialty. Among medical specialties, there

are radiology, oncology, genetics, ophthalmology, dermatology, and neurology articles.

Papers on data science primarily focused on problems in AI/ML-related data, and how the

digital determinants of health lead to algorithm problems at large, rather than contextualizing

within a specific specialty. These papers often focused on primary care medicine or disease-

specific (e.g., COVID-19) analyses across specialties [34,54,55]. For example, data bias in EHR

data may lead to misclassifications and less accurate predictions for select groups [56]. Pro-

posed solutions were varied. One suggestion was to adjust the models: the Joint Fairness

Model is a logistic regression model that estimates group-specific classifiers that incorporate

fairness for prediction [57]. Addressing other steps within the development process, such as

creating inclusive data standards to support interoperability, data and code sharing, and deter-

mining AI reliability through development metrics, may also be helpful [58].

The social science papers focused on sociocultural factors that contributed to data dispari-

ties. Disparities in race, socioeconomics, and internet access lead to data poverty. Often, there

are limited and/or missing race and ethnicity classifications, such as Native Hawaiians and

Pacific Islanders. This is a form of structural racism, as failure to identify race or ethnicity may

hide the social determinants of health for these populations [42,47]. The countervailing chal-

lenge is that merely identifying the race or ethnic data may lead to biases in treatment as well,

so there is no clear solution [59]. We need complete representative data when building the

Table 2. Tally of specialties discussed across studies.

All papers First screening Studies

Data Science 72 Data Science 37 Data Science 24

Social Sciences 31 Social Sciences 22 Social Sciences 17

Public health 20 Public health 13 Public health 6

Other 13 Other 8 Other 5

Radiology 10 Radiology 5 Radiology 5

Dermatology 9 Dermatology 6 Dermatology 0

Oncology 6 Oncology 5 Oncology 4

Genetics 6 Genetics 4 Genetics 3

Ophthalmology 5 Ophthalmology 3 Ophthalmology 2

Neurology 3 Neurology 3 Neurology 1

Policy 2 Policy 1 Policy 0

Basic Sciences 2 Basic Sciences 0 Basic Sciences 0

Psychology 1 Psychology 0 Psychology 0

Cardiology 1 Cardiology 1 Cardiology 0

https://doi.org/10.1371/journal.pdig.0000313.t002
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models, but we must also address the ingrained or unconscious biases at bedside. Access to

treatment itself is complicated by poverty. Moreover, unequal internet access, and therefore

unequal digital health access, is often experienced by the elderly [60], certain global regions

[61], and rural areas [62].

In data poverty articles that discussed genetics, analyses focused on how underrepresentation

of populations leads to diagnostic mistakes and inappropriate pharmacological treatments. Dis-

parities in genetics are seen in the unbalanced distribution of genomic data in various popula-

tions. For example, African, Polynesian, and Brazilian genomic data remain underrepresented or

even ignored, despite the significant contributions this data can make in advancing our under-

standing of the human genome [16,17,58,63]. These genetic variations matter and must be repre-

sented in data. The current method of recording racial/ethnic/genetic data is grossly deficient.

In radiology, AI can be used to enhance diagnosis and follow-up. Yet, the efficacy of algo-

rithms varies across situations. Bias in imaging can occur due to machine-induced variance [64].

A study by Dhont et al. applied five neural networks to recognize COVID-19 pneumonia through

chest radiography, but the algorithm recognized the site (e.g., hospital, clinic) where the radio-

graph was done and not the disease itself. When the model was trained on a reliable and realistic

single-source dataset, the sensitivity results were low, at less than 70% [55]. These studies highlight

the challenges of generalizing findings between devices, clinicians, and institutions.

It was a repeated theme across specialties that disparities in outcomes were often driven by

applying models despite having underrepresented populations in the data set. Consequently,

disparities have been identified across specialties. Cancer treatment outcomes have been

observed due to inappropriate risk assessment and, therefore, inappropriate preventive prac-

tices [65]. In ophthalmology articles, there was an identified lack of representation of various

demographic characteristics and pathological entities in publicly available datasets, prompting

the need for a collaborative approach to reach real-world deployment [15,66,67].

Represented countries

The distribution of the country of study and country of the authors was relatively comparable

(Table 3). The most common country of study was the United States of America, followed by

Table 3. Representation of countries studied and author nationality.

Country Study Author

US 30 31

Multiple Countries 13 15

None/Unknown 3 0

Australia 3 3

Germany 3 2

UK 3 3

Canada 2 2

Spain 2 3

China 1 1

Finland 1 1

Greece 1 1

India 1 1

Israel 1 1

Lebanon 1 1

Netherland 1 1

Poland 1 1

https://doi.org/10.1371/journal.pdig.0000313.t003
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papers that included multiple countries. Most of the studied countries were developed coun-

tries, where the multiple country papers often attempted to compare and contrast countries in

different economic states. For even the wealthy countries, studies still noted disparities across

populations, likely driven by factors such as socioeconomic, racial differences, or a rural/urban

divide [62]. Notably, the only low- and middle-income countries (LMIC) independently stud-

ied in our review were China, India, and Lebanon [18,68,69]. There were no participant coun-

tries nor authors from the African continent. Importantly, the challenges in mentorship were

evident. Authors were mostly from high-income countries, and authors from LMICs were

rarely first authors.

Discussion

Assessment

Improving health care itself is an immensely multifaceted problem. When compounded by

highly technical digital technologies, the variables and outcomes are exponentially more diffi-

cult to monitor. In this review, we discuss how health data poverty is a complicated problem

without a straightforward solution. Disparities can infiltrate anywhere along the application

development process. Disparities are also inherently a systemic problem, where existing biases

will propagate even if the tools and processes are unbiased.

Proper evaluation of complicated issues is essential to avoid further pervading disparities

that exist in accessibility to the data. It is necessary for data scientists, researchers, and clini-

cians to account for struggles with injustice, data selection, and the application of the tools

made as a result of the data. Furthermore, access to big data illuminates one of the most impor-

tant ethical questions in health data poverty: who benefits? Although big data can have exten-

sive value, irresponsible development can be dangerous. Organizations in possession of these

large data sets can choose to provide free access to the information to improve society, or they

contrarily use it to further the company’s financial gain [70]. The accessibility, application, and

distribution of health data sets require stricter oversight and regulation, to ensure they benefit

the social good. The ideal would be that the data most benefits those like the patients who con-

tributed to the data, rather than only the institutions that collected the data.

Essential problems with the tools and data

The AI/ML development process can be simplified into three stages: (1) Data, (2) Model, and

(3) Implementation (Fig 2). Biases can be introduced at any stage of this process; the authors

Fig 2. Potential avenues of bias in the Health AI development process.

https://doi.org/10.1371/journal.pdig.0000313.g002
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denote these agents of bias as source, amplifier, or interaction. Firstly, the source, which is the

data or tool itself, may inherently introduce bias into the entirety of the development process

due to its own deficiencies. This bias perpetuates, even if every subsequent step is unbiased.

Additionally, data might appear unbiased, potentially due to insufficient sample size or unbal-

anced representation. Secondly, an amplifier may magnify a modest bias which becomes more

apparent after a tool is applied. Lastly, the interaction of standalone aspects, which initially

appear unbiased, may result in unforeseen processes that introduce bias. Importantly, the

effects of these agents may not appear until later stages of the development process, nor equally

across implementation.

Increased computational power and data availability have driven the growth of ML in

healthcare over the last decade. However, problems like missing data sets for certain subgroups

impact the ability to generalize the datasets and the AI algorithms created [58]. Flawed algo-

rithms mean the creation of defective models used to operate machines, further amplifying

systemic underrepresentation of different populations. For example, when applying the Fra-

mingham Risk Score to populations with similar clinical characteristics, the predicted risk of a

cardiovascular event was 20% lower for black individuals compared with white individuals,

suggesting that the score may not adequately capture risk factors for some minority groups

[30], and technologies developed and validated using these datasets, are not generalizable to

the wider populations, such as children, ethnic minority groups, older adults and patients with

disabilities. If an AI algorithm trained exclusively with U.S. data were used to predict the mor-

tality of a Filipino COVID-19 population, predictions might be inaccurate and will be disad-

vantageous to populations not represented in the large datasets commonly used to build these

models. This can both reinforce existing health inequities and cause possible harm amongst

minority patients, giving rise to other associated ethical issues. Instead of narrowing the health

gap, such technologies instead widen the digital divide through the health data poverty borne

out of asymmetrical datasets. Consequently, underrepresented people might be unable to ben-

efit from these data-driven interventions and could even be harmed by them.

The increased use of digital technologies also creates a potential for biased datasets. Inade-

quate access to the internet and other essential technology is a structural problem that affects

health, education, and the economy, contributing to data poverty. Datasets from pervasive

sensing, mobile technologies, and social media can under-represent or exclude those without

digital access. Urban and rural discrepancies in internet access significantly contribute to the

disparity in data generation and access to digital healthcare solutions. The unwillingness to use

the internet and share data due to concern about confidentiality breaches, data leakage, and

commercial use or abuse of data also contributes to data poverty (46).

Takeaways

While advancements in AI/ML have the potential to improve healthcare, we must monitor

their development with strict caution. The basis for this argument is that AI/ML is limited by

the quality of the data used to program the technology [31]. One unrealistic perspective is that

AI can help remove bias from fields like healthcare by creating standardized testing and out-

comes, irrespective of a physician’s explicit or implicit bias. However, the undetected structural

biases are perpetuated even with unbiased clinicians and tools. Furthermore, bias during the

selection process for data sets chosen for algorithms can be detrimental if it fails to assess cru-

cial factors like race, gender, or ethnicity, leading to algorithms absent internal and external

validity.

Addressing these concerns requires a collaborative approach among various stakeholders

towards a common goal. Although advancements in AI/ML may differ between countries, a

PLOS DIGITAL HEALTH Health data poverty amplifies existing health disparities: A scoping review

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000313 October 12, 2023 9 / 16

https://doi.org/10.1371/journal.pdig.0000313


standardized approach should ensure that data are available for the benefit of the population

from which they were collected, with the opportunity for ongoing development and testing of

digital health technologies that will improve the health of that population. Prioritization of

datasets will also vary by country, but important features that should be considered include

contextualized local health needs, appropriateness of specific digital health solutions, and the

facility and resources needed to support that digital health solution.

Data representation matters. In AI/ML, using health data not inclusive of various popu-

lations leads to inaccurate generalizations for digital health [1]. Continuing to create technolo-

gies based on these incomplete datasets can be inappropriate and even dangerous [59]. When

data from non-representative and biased datasets are used to encode machine learning and

deep learning, the resulting algorithms may be biased, further compounding existing inequali-

ties in health care and research [34,55,71,72]. Improvement in the collection of inclusive data

from a variety of different populations (e.g., sex, race, gender, ethnicity) results in algorithms

that are appropriately designed for a wider population while reducing biases [73].

The data used to make and validate AI models often under-represent the general popula-

tion. This lack of variation in datasets is known to amplify biases in a population, particularly

for minoritized subgroups. Cheng et al. highlight that models can have disparate impacts on

discriminated subgroups even when the real dataset is not directly used in the downstream

training process and even when the synthetic dataset used for the training is balanced [74]. For

instance, the use of biased data in facial recognition algorithms has resulted in poorer recogni-

tion rates for black female faces in commercially deployed algorithms [75]. Generated, but

biased, data will only exacerbate the prevailing underrepresented population whether through

class imbalance or having small minority sample sizes in the underlying training dataset. Fur-

thermore, generating synthetic data to replace dataset struggles to capture the proportions that

exist in the real data and fails to reduce fairness concerns for subgroups of any given attribute,

potentially leading to changed representation, and introducing bias.

The prevalence and incidence of diseases and their risk factors often vary by population

group. If the data do not adequately represent the population at risk, then models used in AI/

ML might have varying metrics, leading to suboptimal results and possible harm to underrepre-

sented minorities. The importance of these data representations must become a core principle

at the outset of technology design and not an afterthought as it currently is with many tools.

As such, data limitations are an important entity that can result in bias. These sources of

bias in AI/ML may present, in most, if not all stages of the development process of the algo-

rithm. It is crucial to address these biases that may propagate unknowingly since data are used

to create upstream embeddings that facilitate downstream transfer tasks. Dullerud et al. eluci-

date how imbalanced data significantly affected downstream classifications even with balanced

training data, suggesting that data cannot be used to address downstream classifiers from

imbalanced beddings [76].

Recommendations

Be aware of the limitations of AI/ML tools. As AI/ML tools become more advanced,

they become more out of the bounds of typical human understanding. This is already evident

with the growing use of unsupervised learning and neural networks, where AI/ML algorithms

are treated as a simple black box and some idly trust the results [77]. There is a push for

explainable AI, where the tools attempt to highlight the reason or features that contribute to a

particular prediction, however this is not universally utilized and ignores potential interactions

when multiple tools are utilized [78,79]. Clinicians and researchers must be aware of the limi-

tations of the AI/ML tools they deploy and understand the implications based along the entire

PLOS DIGITAL HEALTH Health data poverty amplifies existing health disparities: A scoping review

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000313 October 12, 2023 10 / 16

https://doi.org/10.1371/journal.pdig.0000313


development process. From generating the input source data, all the way through implementa-

tion, there are myriad elements that can negatively impact outcomes. Differing patient popula-

tions, clinician resources, background clinical training, or even equipment can result in widely

varied results. All of these and their interactions need to be well understood in order to adjust

the deployed tools for equity.

Generate equitable data. In order for these AI models to be inclusive, the data used need

to not only be accurate but also representative of the needs of diverse populations. Implement-

ing continuous monitoring and transparency to measure impacts of biases of AI/ML design

and evaluation tools could help strengthen collaborations between the AI and medical fields,

and open up the space for various entities to participate in AI deployment for medicine. Safety

assurance will be needed before deployment of AI systems in the healthcare setting with con-

tinuous monitoring and collection of data and experiences from the use of these systems. In

addition, strong measures need to be adopted from public authorities to ensure security and

avoid abuse of data. Collective enforcement in the data protection domain should be enabled

and facilitated. This review summarizes the complex, multifaceted problem of health data pov-

erty and the need for collaborative efforts to end it.

Representativeness in AI/ML should be the main focus in datasets and algorithms develop-

ment to minimize the risk of the perpetuation of unequal digital healthcare. While data sources

mainly come from privileged populations in a few high-income countries, the inequalities in

digital solutions will remain, increasing the digital divide and contributing to the disconnect in

the adoption of technologies. As data is collected, we must be aware of and avoid biases. The

representative inclusion of every race and sociodemographic group is essential in a healthcare

dataset to avoid inequitable algorithm performance.

We must build trust by assuring data confidentiality and security. Data generation, collection,

and sharing should be endorsed between institutions and among all medical specialties to increase

data representativeness and ML/AI fairness. To caution, there is a heightened ethical challenge

when collecting race/ethnicity-based data as these are highly susceptible to misuse or abuse. How-

ever, these information and associations are also necessary to analyze and uncover unseen or

inherent systemic biases. Rigorous regulation, competent management, and continued oversight

is required to protect those populations affected by the implementation of these systems.

Ultimately, rather than only researching and advancing the development of AI/ML tools,

continued monitoring after deployment focusing on clinical outcomes will be essential. The

downstream analysis of the resultant outcomes will determine which factors need to be priori-

tized for rebalancing. To accomplish this, the full stream of input data, open-sourced algorith-

mic models, and outcome data need to be made available and studied extensively.

Limitations

Our study has several limitations. Firstly, our analysis was limited to articles published in

English, Spanish, and Portuguese, excluding articles in other languages. Secondly, the assess-

ment of scores relied on subjective judgments, which introduces the possibility of internal

biases. We attempted to alleviate some of these by convening a diverse group of authors from

various disciplines and geographic locations and the utilization of independent graders for

scoring, reducing the potential effects associated with subjective and internal biases.

Conclusion

Because health data inherently influences the output of AI/ML, transformative efforts must be

focused on the refinement of the pre-selection process for datasets while continuing to moni-

tor the technology throughout its development. Digital solutions have the potential to improve
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healthcare quality and delivery, but the awareness of health data poverty as a digital determi-

nant of health is necessary to assure fairness and representativeness [80]. With the increasing

use of AI/ML in healthcare, the potential for health inequities it poses must be addressed. AI/

ML systems have complex cycles, involving data acquisition, training, development, and recali-

bration, thus, requiring a multidisciplinary approach. This will allow for dedicated efforts to

address their impact and advise organizations, regulatory bodies, health systems, and govern-

ments for technology that is more digitally inclusive.
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