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Abstract 

Point-of-care (POC) field screening for tools for Mycoplasma bovis (M. bovis) is still lacking due to the requirement for a simple, robust 
field-applicable test that does not entail specialized laboratory equipment. In accordance with the Preferred Reporting Items for 
Systematic Reviews and Meta-analysis (PRISMA) guidelines, this review identifies the methodologies that were retrieved based on 
our search strategy that have been reported for the diagnosis of m. bovis infection between 2014 and diagnostics. A search criterion 
was generated to curate 103 articles, which were reduced in number (to 46), following the screening guidelines of PRISMA. The 43 
articles included in the study present 25 different assay methods. The assay methods were grouped as microbiological culture, sero-
logical assay, PCR-based assay, LAMP-based assay, NGS-based assay, or lateral flow assay. We, however, focus our discussion on the 
three lateral flow-based assays relative to others, highlighting the advantages they present above the other techniques and their po-
tential applicability as a POC diagnostic test for M. bovis infections. We therefore call for further research on developing a lateral 
flow-based screening tool that could revolutionize the diagnosis of M. bovis infection.
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Introduction
Mycoplasma bovis is one of the foremost causes of bovine respira-
tory disease (BRD), a major health problem which affects both 
adult and calf cattle, and has a pronounced economic impact on 
the cattle industry [1]. BRD causes economic losses in herds due 
to reduced productivity and increased costs of treatment and 
culling. Mycoplasma bovis was initially isolated in 1961 from a se-
vere case of mastitis in a dairy herd experiencing an outbreak in 
the USA, but it is now known to cause various clinical symptoms 
in cattle, including mastitis, pneumonia, and arthritis. 
Mycoplasma bovis is also linked to the global etiology of bovine 
mycoplasmosis. It is a pathogen of economic importance to the 
cattle industry (Fu, Sun, Zhang, et al., 2014). Similar to other 
members of the Mycoplasma genus, M. bovis lacks a cell wall, 
with a genome size of around 953,114 bp and less than 30% GC 
content [3]. Mycoplasma bovis is presently acknowledged as one of 
the primary and commonly isolated Mycoplasma species associ-
ated with cattle disease globally [4].

Mycoplasma bovis infections lack effective treatment, whereas 
moderate infections in cattle have the potential to cause an in-
fection with severe clinical manifestations, as well as difficulty in 
diagnosis [3, 4]. Mycoplasma bovis infections spread rapidly in cat-
tle herds, making M. bovis more important. One cattle infected 
with the pathogen could be a source of the infection within a 

herd and also transmit the infection, especially to closely grazing 
herds for years; therefore, identifying, isolating, and culling 
infected cattle is the pragmatic step to curb the spread of M. bovis 
infections [5]. Rapid, sensitive, and accurate screening of the 
herd is needed to control potential outbreaks. Previous review on 
M. bovis diagnostic identified microbial culture, serology, DNA- 
based, and mass spectrometry as the broad category of diagnos-
tic techniques currently available for M. bovis infection, outlining 
the merits and demerits of each one [4, 6]. In this study, we me-
thodically studied the potential of lateral flow-based diagnostic 
techniques for POC rapid screening for M. bovis, with a call for 
further research to aid its field usability.

Materials and methods
A comprehensive literature search of published articles on the di-
agnosis and detection of M. bovis was carried out on WoS and 
Scopus databases on 18 June 2023. The following search terms 
were used: “Mycoplasma bovis,” “detection,” “diagnosis,” 
“diagnostics” and “assay,” “testing,” and “screening”. Delimiters 
like Boolean operators (AND/OR), quotation marks, parentheses, 
wildcards, and asterisks (�) were used to combine the search 
terms as (diagnos� OR detect� OR test� OR assay� OR screen�) 
AND (“mycoplasma bovis”). The search field was limited to “Title” 
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in both databases because of the specificity of the review focus 
and the robustness of the search terms. Records that meet the in-
clusion/exclusion criteria (Table 1) were downloaded for screen-
ing. A systematic paper selection process comprising title, 
abstract, and full-text screening was sequentially carried out in 
accordance with the Preferred Reporting Items for Systematic 
Reviews and Meta-analyses (PRISMA) 2020 guideline [7–9].

Results
Search results
WoS search recognized 50 articles, and Scopus search returned 
53 articles, totaling 103 articles from both databases. The results 
from each database were exported in BibTeX format. Then, 
merged and tidied to remove duplicated articles on: https://fla 
mingtempura.github.io/bibtex-tidy/. Forty-three duplicated 
articles were removed. The 58 records left were initially screened 
by their titles and abstracts (five articles screened out). Then, a 
more rigorous full-text screening identified seven other articles 
that did not meet the inclusion criteria. A total of 12 articles were 
excluded in accordance with the eligibility criteria, and 46 
articles were reviewed in the study, having passed the eligibility 
criteria and quality assessment (Fig. 1).

Summary of detection/diagnostic techniques for 
M. bovis infection
Articles that reported methods used in the detection or/and diag-
nosis of M. bovis between 2014 and 2023 were reviewed in this 
study (Table 2). The methods can be grouped as microbiological 
culture (six articles), serological assays (27 articles), PCR and 
PCR-related assays (19 articles), LAMP and LAMP-based assays 
(six articles), NGS-based diagnostics (two articles), lateral flow 
assays (three articles). Some of the articles utilized and compared 
two or more methods, especially comparing the sensitivity and 
specificity of the traditional microbiological culture with other 
methods [10–15] or compare different commercially available 
ELISA kits [16–19]. Such articles are, therefore, cited under all 
such categories. This may be a total of 63 method-based categori-
zations of 46 articles.

Summary of other assay methods and their 
major limitations
Generally, diagnostic assays are used to determine the presence 
or absence of a particular disease or condition in an individual 
[38]. The 46 articles reviewed in the research employed various 
assay methods, categorized in Fig. 2. Having a focus on the three 
lateral flow assay techniques identified in the search, we first 

highlighted the basic principles and limitations of the other 
reported methods. Thereafter, the lateral flow techniques are de-
scribed, as well as their potential and possible applications and 
improvements.

Microbiological culture
The microbiological culture method for diagnosing M. bovis infec-
tion involves the isolation and propagation of the pathogen from 
clinical specimens, such as nasal swabs, lung tissues, or milk 
samples. Mycoplasma bovis, being a fastidious bacterium lacking a 
cell wall, requires specialized culture conditions for successful 
isolation. Mycoplasma bovis colonies are typically small, 
pinpoint-sized, and appear as tiny, dome-shaped structures. 
These colonies can be observed under a microscope or through 
visual inspection. This approach provides a valuable tool for un-
derstanding the prevalence and epidemiology of M. bovis in live-
stock populations, aiding in the implementation of targeted 
control and prevention strategies.

Microbiological culture can be time-consuming, typically tak-
ing several days to obtain results. It is not every infected animal 
in dairy herds that exhibits symptoms of the disease. It is, there-
fore, challenging to identify carriers or sub-clinically infected 
animals since there isn't a constant location of infection to sam-
ple. Subclinical mastitis can be difficult to diagnose since M. bovis 
shedding in milk occurs sporadically. There is also difficulty in 
identifying subclinical infection in non-lactating stock [12]. More 
importantly, the simplicity of M. bovis, like other mycoplasmas, 
makes them impairs their ability to synthesize amino acids and 
fatty acids, hence their fastidious nutritional requirements [4]. 
Isolating M. bovis by culture is therefore often compromised by 
the overgrowth of other faster growing bacteria [10]. Also, the 
organisms may lose viability during sample collection, transpor-
tation, or storage, especially if not handled under optimal condi-
tions. This can result in false-negative culture results. Culture 
may not always differentiate between multiple microbial species 
present in a clinical sample [11]. This can complicate the inter-
pretation of results, especially if one pathogen inhibits the 
growth of another. Microbiological culture requires skilled labo-
ratory personnel and involves a series of labour-intensive steps, 
from sample inoculation to result interpretation. This can in-
crease the likelihood of errors and the overall cost of testing.

Serological assay
The serological assay for diagnosing M. bovis infection relies on 
the detection of specific antibodies produced by the host in re-
sponse to the pathogen. This method provides a rapid and effi-
cient means of identifying the exposure and infection status of 

Table 1. Inclusion and exclusion criteria.

Parameter Inclusion criteria Exclusion criteria

Study design Only original articles will be included Other publications aside from original articles, including 
case reports, letters to the editor, conference abstracts, 
opinion articles, and review articles, will be excluded

Diagnosis Studies focusing on the diagnosis of M. bovis infec-
tion using any diagnostic method, including labo-
ratory tests, will be included

Studies that only describe imaging techniques and clinical 
signs/symptoms for diagnosing M. bovis infection will 
be excluded.

Detection Studies that report or discuss detection methods for 
M. bovis or any biomarkers of M. bovis infection will 
be included

Studies that do not report or discuss detection methods 
for M. bovis or any biomarkers of M. bovis infection will 
be excluded.

Language Studies published in English will be included Studies published in languages other than English will 
be excluded

Publication date Only studies published in 2014-2023 will be included Studies published in 2014 and after 18th June 2023, when 
the search was carried out, will be excluded
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herds, both to delimit and to confirm the absence of M. bovis [53], 

which provide valuable information for both diagnostic and sur-
veillance purposes.

Serological assays play a crucial role in diagnosing M. bovis 
infections because they specific antibodies produced by the host. 

These assays are valuable for surveillance, monitoring the spread 

of the pathogen, and assessing the effectiveness of control meas-

ures in animal populations. Serological assays are reliant on the 

host's immune response, which may take time to produce detect-
able levels of antibodies [22]. Moreover, antibodies can persist for 

an extended period of time after an infection has been resolved. 

Detecting antibodies does not necessarily indicate an active in-

fection, and the presence of antibodies may represent a past ex-
posure or a successfully cleared infection. Cross-reactivity can 

occur when antibodies recognize antigens from closely related 

microorganisms, like M. agalactiae [54]. This may lead to false- 

positive results or difficulty in distinguishing between different 

pathogens [55, 56]. Furthermore, host factors such as age, im-
mune status, and genetic variability can impact the antibody re-

sponse. Some individuals may produce antibodies more rapidly 

or at higher levels than others, influencing the assay results.

Molecular technique
The molecular technique for diagnosing M. bovis infection 

employs nucleic acid amplification methods, such as polymerase 

chain reaction (PCR) and loop-mediated isothermal amplification 

(LAMP), to detect and amplify specific genetic material unique to 
the pathogen. High-throughput sequencing sometimes follows 

the amplification to identify and analyze the pathogen's nucleo-

tide sequence. This method has high sensitivity and specificity, 

allowing for the rapid and accurate identification of M. bovis in 

clinical samples. The approaches can exclude cross-reactivity 
with other related bacteria and Mycoplasma species [39]. El- 

Tawab et al. [33], however, recommended that culturing milk 

samples before PCR improved the sensitivity. Molecular techni-

ques are instrumental in early detection, accurate diagnosis, and 

monitoring of M. bovis prevalence in animal populations. Itoh 

et al. [47] evaluated LAMP as a more rapid, simple, and accurate 

detection method to directly detect the M. bovis gene in milk.
Molecular techniques are rigorous, and contamination during 

sample collection, handling, or laboratory use can lead to false- 

positive results. Molecular techniques detect genetic material 

that may persist even in non-viable microorganisms. This could 

result in false-positive results. The possibility of genetic diversity 

within microbial species can affect the ability of primers to bind 

and amplify target sequences. Molecular diagnostic methods can 

be costly to implement. This may limit their accessibility in 

resource-limited settings. Performing molecular diagnostics 

requires specialized training, both in sample processing and in 

data analysis. Skilled personnel are essential to ensure the reli-

ability and accuracy of results.
A molecular technique used in mass spectrometry, matrix- 

assisted laser desorption/ionization time-of-flight (MALDI-TOF) 

has proved reliable and accurate as it identifies M. bovis by 

analyzing their protein profiles, ionizing and measuring their 

mass-to-charge ratio [57]. McDaniel & Derscheid [58] combined 

MALDI-TOF mass spectrometry with high-resolution melting 

PCR to detect genetic variations by monitoring the DNA strands 

melting after amplification. The outcome holds great promise for 

a swift and regular diagnosis of M. bovis. However, like other 

molecular techniques, cost, dependence on skilled personal and 

specialized equipment limit its potential as in POC diagnostics.

NGS-based assay
NGS is a high-throughput DNA sequencing technology that 

allows the simultaneous sequencing of millions of DNA frag-

ments. NGS has revolutionized genomics research and clinical 

diagnostics, providing unprecedented insights into genomic in-

formation. The principle involves the parallel sequencing of short 

DNA fragments, which are then computationally reconstructed 

to reveal the complete sequence of the target DNA [48, 49]. 

Sample contamination, high cost, the need for sophisticated bio-

informatics tools, skilled analysts, and error rates are the major 

limitations of this technique.

Figure 1. PRISMA study selection flow chart.
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Lateral flow assay techniques for M. 
bovis diagnosis
In general, LFAs offer significant advantages in diagnostics, mak-
ing them particularly suitable for POC applications. Such advan-
tages include: the fact that they are often designed for ease of 
use in various settings, including remote or resource-limited 
areas [9, 59]. They provide rapid results at the POC, facilitating 
quick decision-making without the need to send samples to a 
centralized laboratory. Also, LFAs are generally cost-effective 
compared to more complex laboratory-based methods. They are 
typically user-friendly and require minimal specialized training. 
Healthcare professionals, as well as individuals without exten-
sive laboratory expertise, can perform these assays with relative 
ease. LFA testing tools are often compact and portable in nature 
to enhance their applicability in diverse settings, as they can be 
easily transported and deployed in areas with limited infrastruc-
ture, enabling on-the-spot testing without the constraints of a 
fixed laboratory environment. Various diagnostic purposes, such 
as the detection of antibodies, antigens, and nucleic acids, can 
adapt LFAs for their versatility. This versatility makes them 

valuable tools for a wide range of infectious diseases, pregnancy 

testing, and other health-related assessments [60].
Two of the three lateral flow-based assays that were identified 

from the search strategies employed recombinase polymerase 

amplification (RPA) to amplify the DNA of M. bovis to enhance its 

subsequent detection by a probe-based lateral flow strip. The 

third lateral flow-based assay was developed to detect antibodies 

at M. bovis in the host.

The RPA-FLS
The RPA technique has become a promising isothermal DNA am-

plification rapid assay that could be useful in resource-limited 

settings. Zhao et al. [51] introduced an assay technique that com-

bines RPA and lateral flow dipstick (LFD) for M. bovis detection. 

The combined technique provides rapid and easy detection of M. 

bovis DNA. With a detection limit of 20 copies per reaction, the 

assay successfully detected M. bovis DNA in 30 min at 39�C, 

which was comparable with the quantitative PCR (qPCR) assay.
The working principle of the RPA-FLD involves amplification 

(RPA), detection (LFD), and visualization [61, 62]. The uvrC and 

Table 2. All Assay methods used to diagnose M. bovis infection between 2014 and 2023

Methods Specific assay Study Reference No

Microbiological culture (Hazelton et al., 2018, 2020; Jaramillo et al., 2023; Parker 
et al., 2017; Salina et al., 2020; Szacawa et al., 
2016)10,11,12,13,14,15

6

Serological assay BIO K302 ELISA and BIO K260 
Commercial ELISA Kit

(Akan et al., 2014; Andersson et al., 2019; Nielsen et al., 2015; 
Parker et al., 2017; Petersen et al., 2018, 2020; Salgadu, 
Cheung, et al., 2022; Schibrowski et al., 2018; Veldhuis 
et al., 2023; Vojinovi�c et al., 2014)11,16,17,18,19,20,21,22,23,24

10

ID Screen Commercial ELISA Kit (Andersson et al., 2019; Petersen et al., 2018, 2020; Veldhuis 
et al., 2023)16,17,18,23

4

MilA-based ELISA (Al-Farha et al., 2020; Petersen et al., 2018; Salgadu, Cheung, 
et al., 2022; Salgadu, Firestone, et al., 2022; Wawegama 
et al., 2014, 2016)19,20,25,26,27,28

6

Optimized iELISA (Pires et al., 2021)29 1
rMbovP579-based ELISA (Khan et al., 2016)30 1
IgG avidity test (Han et al., 2015)31 1
Western Blotting (Schibrowski et al., 2018)22 1
Dc-ELISA (Fu et al., 2014a)2 1
AgELISA (El-Tawab et al., 2019)33 1
Dc-ELAA (Fu, Sun, Yu, et al., 2014)32 1
Total count for serological assays 27

PCR and PCR-related Assays Conventional PCR (Akan et al., 2014; Andersson et al., 2019; Cengiz et al., 2021; 
Hamad et al., 2019; Hazelton et al., 2020; Jaramillo et al., 
2023; Junqueira et al., 2020; Parker et al., 2017; Salina 
et al., 2020; Szacawa et al., 2016)10,11,13,14,15,18,24,34,35,36

10

Real-time (Behera et al., 2018; Buckle et al., 2020; Jaramillo et al., 2023; 
Nielsen et al., 2015; Sur�ynek et al., 2016; Wisselink et al., 
2019)15,23,37,39,40

6

multiplex qPCR (Chauhan et al., 2021)41 1
Taqman real-time PCR (Naikare et al., 2015)42 1
PCR/DGGE (Szacawa et al., 2016)10 1
Total count for PCR and PCR-related assays 19

LAMP and LAMP-based assays LAMP (Appelt et al., 2019)43 1
real-time LAMP (Ashraf et al., 2018; Fan et al., 2018; Pan et al., 2020)44,45,46 3
PURE-LAMP (Itoh et al., 2020)47 1
Improved LAMP (Higa et al., 2016)1 1
Total count for LAMP and LAMP-based assays 6

NGS-based diagnostics Nanopore (Bokma et al., 2021)48 1
i-Seq (Illumina) (Liapi et al., 2021)49 1
Total count for NGS-based Diagnostics 2

Lateral flow assay CNPs-based LFS (Shi et al., 2020a)50 1
RPA-LFD and LFS RPA (Zhao et al., 2018; Li et al., 2021)51,52 2
Total count for lateral flow assays 3

MilA—mycoplasma immunogenic lipase A; Ag-ELISA—antigen-detection enzyme-linked immunosorbent assay; Dc-ELISA—direct competitive enzyme-linked 
immunosorbent assay; ELAA-enzyme-linked aptamer assay; NGS—next generation sequencing; PURE—purified enzymes; LAMP—loop-mediated isothermal 
amplification; PCR—polymerase chain reaction; DGGE—denaturing gradient gel electrophoresis; CNP—carbon nanoparticle; LFS—lateral flow strip; LFD—lateral 
flow dipstick; RPA—recombinase polymerase amplification.
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oppD-oppF genes were amplified from the genomic DNA 
extracted from M. bovis reference type strain PG45 using special-
ized forward and reverse primer pairs. As the recombinase en-
zyme unzips the DNA, polymerase makes new copies of the 
target genes. The amplified DNA is then applied to the LFD, 
which is a special strip. This strip was constructed with an immo-
bilized probe, a molecule that can capture the amplified M. bovis 
gene. If the M. bovis DNA is present, the corresponding genes 
would be amplified by the RPA and captured and detected by the 
LFD. The dipstick features markers that undergo a color change 
upon capturing the target DNA. This color change is visible to the 
naked eye, providing a quick and easy way to confirm the pres-
ence of M. bovis DNA. The RPA-LFD showed 99.00% sensitivity, 
95.61% specificity, and 0.902 kappa coefficient compared with 
the qPCR.

The study by Li et al. [52] looked at the uvrC gene of M. bovis 
and compared a real-time RPA assay (monitored by fluorescence) 
and an RPA with a lateral flow strip (LFS) assay. The real-time 
RPA in a Genie III took 20 minutes to complete at 39�C, whereas 
the LFS-RPA in an incubator block took 15 minutes. The lateral 
flow strip displayed the results within 5 minutes. High specificity 
for M. bovis was seen in both assays, and there was no cross- 
reaction with the other examined pathogens. The authors 
concluded that, as an intriguing and promising instrument, 
the developed RPA assays could efficiently, conveniently, and 
credibly detect M. bovis in bovine milk, and the assays would be 
beneficial in the quick response to M. bovis infection, causing bo-
vine mastitis.

Generally, people consider RPA in conjunction with LFS to be a 
relatively simple and portable method, using the LF probe to 
avoid the challenges of multiplexing and non-specific amplifica-
tion that RPA frequently faces. Yet, the technique still requires 
basic laboratory equipment, such as a heat block or water bath, 
for the amplification step [61]. The RPA reaction requires incuba-
tion at temperatures between 35�C and 42�C for 15-30 minutes 
[51, 52]. Although designed for simplicity, effective implementa-
tion of RPA-LFD may still require some level of user training. The 
cost of reagents and consumables may also have an impact on 
the feasibility of widespread POC usage.

The CNP-LFS
Whereas RPA-LFD incorporates a lateral flow strip for detecting 
M. bovis DNA, the CNP-LFS of Shi et al. [50] was developed to de-
tect antibodies against M. bovis sequel to infections. Carbon 
nanoparticles (CNPs) were used as the labeled materials, as in 

previous studies [63, 64]. The intense black color of CNPs pro-
vides good contrast for visual detection. The results from the test 
strip were highly consistent with those from ELISA [50]. The test 
showed high specificity (100%) and no cross-reaction with other 
bovine pathogens. The detection sensitivity of the test was also 
relatively high (97.67%). According to the authors, all the results 
indicated that the colloidal carbon test strip could serve as a sim-
ple, rapid, sensitive, and specific diagnostic method for detecting 
antibodies against M. bovis at cattle farms.

However, developing a lateral flow detection assay to detect 
antibodies against a pathogen, rather than detecting an antigen, 
biomarker, or pathogen DNA, comes with its own set of disadvan-
tages. The immune system typically produces antibodies in re-
sponse to infection, and their presence may lag behind the 
appearance of the pathogen or its antigens [65]. Detecting anti-
bodies might result in a time lag between the onset of infection 
and a positive test result. Also, in the early stages of infection, 
the concentration of antibodies may be low or undetectable. This 
can lead to false-negative results, especially during the initial 
phase of an infection. Moreover, the diagnostic window for anti-
body detection may be narrower compared to the direct detec-
tion of antigens or DNA [30, 66]. Furthermore, antibodies persist 
for a longer duration, potentially leading to false positives or dif-
ficulty in differentiating past and active infections. The effective-
ness of antibody detection also relies on the host's immune 
response, which can be influenced by factors such as immune 
suppression or variability in individual immune systems [67, 68].

Future perspectives
Given the enormous advantages of the lateral flow-related assay, 
especially its potential as a POC rapid diagnostic tool for M. bovis 
infection, we suggest that further research in this direction could 
soon yield a more substantial result, revolutionizing the diagno-
sis of M. bovis infection. This discovery has the potential to en-
hance disease surveillance, enable timely intervention, and 
ultimately mitigate the economic and health impacts of M. bovis- 
related diseases in livestock, all while contributing to the overall 
health and sustainability of livestock operations. The develop-
ment of POC rapid diagnostic tools for M. bovis infection repre-
sents a significant breakthrough that would pragmatically 
contribute toward the realization of the United Nations’ 
Sustainable Development Goals (UN-SDG) 2 and 3. UN-SDG 2 
addresses Zero Hunger (goal 2); and Cattle, the host of M. bovis in-
fection, is a source of food to many worldwide, whereas UN-SDG 

Figure 2. Categories of diagnostic assays reported for M. bovis
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3 addresses health for all. In accordance with the global 
one-health paradigm, it is essential to tackle M. bovis infection as 
the pathogen has been suggested to have zoonotic potential.
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