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COUNTING NEGATIVE EIGENVALUES OF
ONE-DIMENSIONAL SCHRÖDINGER OPERATORS WITH

SINGULAR POTENTIALS

MARTIN KARUHANGA1∗ AND EUGENE SHARGORODSKY2

Abstract. In this paper, we extend the well known estimates for the number
of negative eigenvalues of one-dimensional Schrödinger operators with poten-
tials that are absolutely continuous with respect to the Lebesgue measure to
the case of strongly singular potentials.

1. Introduction

Let N−(V ) be the number of negative eigenvalues of a Schrödinger operator

H = −∆− V, V ≥ 0

on L2(Rd). For d > 2, the number N−(V ) is estimated above by the well known
Cwikel-Lieb-Rozenblum (CLR) inequality [2, 8]. For d = 2, the CLR inequality
fails and the best known estimates for N−(V ) in this case involve weighted L1

norms and Orlciz norms of the potential (see, e.g., [9, 10] and [7] in the case
where V is supported by a Lipschitz curve). For d = 1, an analogue of the CLR
inequality holds for potentials that are monotone on R+ and R− (see, e.g., [4]).
For general nonnegative potentials that are locally integrable on R with respect
to the standard Lebesgue measure, N−(V ) admits the following estimate

N−(V ) ≤ 1 + C
∑

{j∈Z,Aj(V )>c}

√
Aj(V ) , (1.1)

where C, c are positive constants and

A0(V ) =

∫ 1

−1

V (t) dt, Aj(V ) = 2j
∫ 2j

2j−1

V (t) dt, j > 0,

Aj(V ) = 2|j|
∫ −2|j|−1

−2|j|
V (t) dt, j < 0

(see [11] and the references therein). When V is a linear combination of Dirac
delta functions, results on N−(V ) can be found for example in [1]. The main
purpose of this paper is to extend the estimate (1.1) to the case when V is allowed
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to be a measure that is not necessarily absolutely continuous with respect to the
Lebesgue measure. In particular, we study the operator

Hµ := − d2

dx2
− µ (1.2)

on L2(R), where µ is an arbitrary σ-finite positive Radon measure on R.

2. Main result

We denote by N−(µ,R) the number of negative eigenvalues of (1.2) counting
multiplicities. Define (1.2) via its quadratic form

qµ,R[u] :=

∫
R
|u′(x)|2dx−

∫
R
|u(x)|2dµ(x),

Dom(qµ,R) = W 1
2 (R) ∩ L2(R, dµ),

where W 1
2 (R) denotes the standard Sobolev space of square integrable functions

with square integrable weak derivatives. Then N−(µ,R) is given by

N−(µ,R) = sup{dimL : qµ,R[u] < 0, ∀u ∈ L \ {0}}, (2.1)

where L denotes a linear space of Dom(qµ,R) (see, e.g., [3, Theorem 10.2.3]).

Let

In := [2n−1, 2n], n > 0, I0 := [−1, 1], In := [−2|n|,−2|n|−1], n < 0

and

An :=

∫
In

|x| dµ(x) n 6= 0 , A0 :=

∫
I0

dµ(x) . (2.2)

Theorem 2.1. Let µ be a σ-finite positive Radon measure on R and let {An} be
the sequence in (2.2). Then there exist constants c, C > 0 such that

N−(µ,R) ≤ 1 + C
∑

{n∈Z,An>c}

√
An .

3. Auxiliary results

Let Ω ⊂ Rn be an arbitrary open set and let µ be a positive σ-finite Radon mea-
sure on Rn. Further, let V be a non-negative µ-measurable real valued function
and V ∈ L1

loc(Ω, µ). Define the following quadratic form

EV µ,Ω[w] :=

∫
Ω

|∇w|2 dx−
∫

Ω

V |w|2 dµ(x),

with the domain Dom(EV µ,Ω), which is a linear subspace of W 1
2 (Ω)∩L2(Ω, V dµ).

Note that µ does not have to be the n dimensional Lebesgue measure, and it may
well happen that µ(∂Ω) > 0.

Definition 3.1. Let Ω ⊂ Rn be an open set. We say that a (finite or infinite)
sequence {Ωk} of non-empty open subsets Ωk ⊂ Ω is a µ–partition of Ω if Ωk∩Ωl =
∅ when k 6= l, Ω \ ∪kΩk has zero Lebesgue measure, and µ

(
Ω \ ∪kΩk

)
= 0.
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The following result can be found, e.g., in [5, Ch.6, §2.1, Theorem 4] in the
case when µ is absolutely continuous with respect to the Lebesgue measure.

Lemma 3.2. Let {Ωk} be a µ–partition of Ω and suppose Dom(EV µ,Ω), Dom(EV µ,Ωk)
are such that for every k,

w|Ωk ∈ Dom(EV µ,Ωk), ∀w ∈ Dom(EV µ,Ω).

Then
N−(EV µ,Ω) ≤

∑
k

N−(EV µ,Ωk). (3.1)

Proof. Let
Σ := ⊕{Dom(EV µ,Ωk), k = 1, 2, ...}.

Here ⊕ denotes the direct sum. We consider
∑

k EV µ,Ωk as a form defined on Σ.
Let J : Dom(EV µ,Ω) −→ Σ be the embedding defined by

w 7−→ (w|Ω1 , w|Ω2 , ...).

Let Γ := J (Dom(EV µ,Ω)). Then ∀w ∈ Dom(EV µ,Ω), we have

EV µ,Ω[w] =

∫
Ω

|∇w(x)|2dx−
∫

Ω

V (x)|w(x)|2dµ(x)

≥
∑
k

(∫
Ωk

|∇w(x)|2dx−
∫

Ωk

V (x)|w(x)|2dµ(x)

)

=
∑
k

EV µ,Ωk [w|Ωk ] =

(∑
k

EV µ,Ωk

)
[Jw].

Hence

N−(EV µ,Ω) ≤ N−

((∑
k

EV µ,Ωk

)∣∣
Γ

)
≤ N−

(∑
k

EV µ,Ωk

)
=
∑
k

N−(EV µ,Ωk).

�

Let I be a bounded interval in R of length l. For simplicity, take I = (0, l).
Let 0 = t0 < t1 < ... < tn = l be a partition of the interval I into n subintervals
Ik = (tk−1, tk). Let P stand for any such partition and |P | denote the number of
subintervals, i.e. |P | = n. Let ν be a positive Radon measure on R and for any
real number a > 0, consider the following function of partitions:

Θa(P ) := max
k

(tk − tk−1)a ν
(
Ik

)
. (3.2)

Lemma 3.3. Suppose ν({x}) = 0 for all x ∈ I. Then for any n ∈ N, there exists
a partition P of the interval I such that |P | = n and

Θa(P ) ≤ lan−1−aν(I). (3.3)

Proof. The proof is similar to that of [11, Lemma 7.1] where measures absolutely
continuous with respect to the Lesbegue measure were considered. By scaling, it
is enough to prove (3.3) for l = 1 and ν(I) = 1. For n = 1, there is nothing to
prove. Now suppose (3.3) is true for some n. We need to show that then this is
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true for n+ 1. Since x 7−→ ν([x, 1)) is continuous, there exists a point x ∈ (0, 1)
such that

(1− x)aν([x, 1)) = (n+ 1)−1−a. (3.4)

Then one has

ν([x, 1)) = (n+ 1)−1−a(1− x)−a.

By the induction assumption, there exists a partition P0 of the interval (0, x) into
n subintervals 0 = t0 < t1 < ... < tn = x such that

Θa(P0) ≤ xan−1−aν((0, x))

= xan−1−a (1− (n+ 1)−1−a(1− x)−a
)
.

Let P be the partition 0 = t0 < t1 < ... < tn < tn+1 = 1. Since (3.4) holds, (3.3)
with n+ 1 in place of n will follow if one proves that Θa(P0) ≤ (n+ 1)−1−a. The
latter is achieved this by showing that

n−1−a ≤ (n+ 1)−1−ax−a + n−1−a(n+ 1)−1−a(1− x)−a.

Let h(x) = (n + 1)−1−ax−a + n−1−a(n + 1)−1−a(1 − x)−a. Then h is convex on
(0, 1), and solving h′(x) = 0 we see that h attains its minimum on (0, 1) at the
point x = n(n+ 1)−1 and that this minimum value is n−1−a. �

Lemma 3.4. Suppose ν({t}) = 0 for all t ∈ I. For any n ∈ N, there exists a
partition P of the interval I such that |P | = n and∫

I

|u(t)|2dν(t) ≤ l

n2
ν(I)

∫
I

|u′(t)|2 dt

for all u ∈ Ln, where Ln is the subspace of W 1
2 (I) of co-dimension n formed by

the functions satisfying u(t1) = ... = u(tn) = 0.

Proof. For any t ∈ Ik, the Cauchy-Schwartz inequality implies

|u(t)|2 = |u(t)− u(tk)|2 =

∣∣∣∣∫ tk

t

u′(s) ds

∣∣∣∣2 ≤ |t− tk| ∫ tk

t

|u′(s)|2 ds

≤ |tk − tk−1|
∫ tk

tk−1

|u′(s)|2 ds.

Hence ∫
Ik

|u(t)|2 dν(t) ≤ sup
t∈Ik
|u(t)|2ν(Ik)

≤ |tk − tk−1|ν(Ik)

∫ tk

tk−1

|u′(s)|2 ds.
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With a = 1, (3.2) and Lemma 3.3 imply∫
I

|u(t)|2 dν(t) =
n∑
k=1

∫
Ik

|u(t)|2 dν(t)

≤
n∑
k=1

|tk − tk−1|ν(Ik)

∫ tk

tk−1

|u′(s)|2 ds

≤ Θa(P )
n∑
k=1

∫
Ik

|u′(s)|2 ds ≤ l

n2
ν(I)

∫
I

|u′(s)|2 ds.

�

The above Lemma excludes measures with atoms. However, one can show
that the lemma still holds true even when ν has atoms by approximating ν by
measures that are absolutely continuous with respect to the Lebesgue measure.

Lemma 3.5. Let ν be an arbitrary positive Radon measure on R. For any c > 1
and any n ∈ N there exists a partition P of I such that |P | = n and∫

I

|u(t)|2dν(t) ≤ c
l

n2
ν
(
I
)∫

I

|u′(t)|2 dt,

for all u ∈ W 1
2 (I) such that u(t1) = u(t2) = ... = u(tn) = 0.

Proof. Let ϕ ∈ C∞0 (R) such that ϕ(t) = 0 if |t| ≥ 1, ϕ ≥ 0, and
∫
R ϕ(t) dt = 1.

For ε > 0, let ϕε(t) = 1
ε
ϕ( t

ε
). Then ϕε(t) = 0 if |t| ≥ ε and

∫
R ϕε(t) dt = 1.

Extend ν to R by ν(J) = 0 for J = R \ I. Let νε := ν ∗ ϕε, i.e.,

dνε(t) =

(∫
R
ϕε(t− y) dν(y)

)
dt.

Then supp νε ⊆ Iε, where Iε := [−ε, l + ε]. By Lemma 3.4, for any n ∈ N there
exists a partition Pε = {tε0, ..., tεn} of Iε such that |Pε| = n and∫

Iε

|uε(t)|2dνε(t) ≤
l

n2
νε(Iε)

∫
Iε

|u′ε(t)|2 dt, (3.5)

for all uε ∈ W 1
2 (Iε) such that u(tε1) = ... = u(tεn) = 0 .

Let

ξ(x) :=
l + 2ε

l
x− ε.

Then

ξ−1(y) =
l

l + 2ε
(y + ε)

and
ξ : I −→ Iε, ξ−1 : Iε −→ I.

Let
tk = ξ−1 (tεk) , k = 0, ..., n.

Take any u ∈ W 1
2 (I) such that u(t1) = ... = u(tn). Consider

uε(y) := u(ξ−1(y)).
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Then uε ∈ W 1
2 (Iε) and uε(t

ε
1) = ... = uε(t

ε
n) = 0, so (3.5) holds.

Now,

νε(Iε) =

∫
Iε

∫
R
ϕε(t− y)dν(y) dt =

∫
R

∫
Iε

ϕε(t− y) dtdν(y)

=

∫
I

∫
Iε

ϕε(t− y) dtdν(y) =

∫
I

∫
R
ϕε(t− y) dtdν(y)

=

∫
I

dν(y) = ν
(
I
)
, (3.6)

∫
Iε

|u′ε(t)|2 dt =

∫
Iε

∣∣∣∣ ddtu(ξ−1(t))

∣∣∣∣2 dt =
l

l + 2ε

∫
I

|u′(x)|2 dx

≤
∫
I

|u′(x)|2 dx, (3.7)

∣∣∣∣∫
I

|u(y)|2 dν(y)−
∫
Iε

|uε(t)|2 dνε(t)
∣∣∣∣

=

∣∣∣∣∫
R
|u(y)|2 dν(y)−

∫
R
|uε(t)|2 dνε(t)

∣∣∣∣
=

∣∣∣∣∫
R
|u(y)|2 dν(y)−

∫
R
|uε(t)|2

∫
R
ϕε(t− y)dν(y) dt

∣∣∣∣
=

∣∣∣∣∫
R
|u(y)|2 dν(y)−

∫
R

∫
R
|uε(τ + y)|2ϕε(τ)dτ dν(y)

∣∣∣∣
≤
∫
R

∫
R

∣∣|u(y)|2 − |uε(τ + y)|2
∣∣ϕε(τ)dτdν(y)

≤ max
y∈I
|τ |≤ε

∣∣|u(y)|2 − |uε(τ + y)|2
∣∣ ν(I),

|u(y)|2 − |uε(τ + y)|2 = |u(y)|2 −
∣∣∣∣u( l

l + 2ε
(y + τ + ε)

)∣∣∣∣2
≤
(
|u(y)| −

∣∣∣∣u( l(y + τ + ε)

l + 2ε

)∣∣∣∣)(|u(y)|+
∣∣∣∣u( l(y + τ + ε)

l + 2ε

)∣∣∣∣)
≤ 2
√
|I|
∣∣∣∣y − l

l + 2ε
(y + τ + ε)

∣∣∣∣ 12 ‖u′‖2
L2

= 2
√
l

√
1

l + 2ε
|2εy − lτ − lε|

1
2︸ ︷︷ ︸

≤
√

4lε

‖u′‖2
L2

≤ 4
√
l

√
l

l + 2ε

√
ε‖u′‖2

L2 ≤ 4
√
l
√
ε‖u′‖2

L2 .
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Hence ∣∣∣∣∫
I

|u(y)|2 dν(y)−
∫
Iε

|uε(t)|2 dνε(t)
∣∣∣∣ ≤ 4

√
l
√
ε‖u′‖2

L2ν
(
I
)
.

This combined with (3.5),(3.6), and (3.7) implies∫
I

|u(y)|2 dν(y) ≤
∫
Iε

|uε(t)|2 dνε(t) + 4
√
l
√
ε‖u′‖2

L2ν
(
I
)

≤ l

n2
ν
(
I
)∫

I

|u′(x)|2 dx+ 4
√
l
√
εν
(
I
)∫

I

|u′(x)|2 dx

=

(
l

n2
+ 4
√
l
√
ε

)
ν
(
I
)∫

I

|u′(x)|2 dx.

It is now left to take ε > 0 such that l
n2 + 4

√
l
√
ε ≤ c l

n2 , i.e.

ε ≤
(
c− 1

4n2

)2

l.

�

Lemma 3.6. For every y ∈ R+, there exists c > 1 such that

dcye − 1 ≤ y ,

where dxe is the smallest integer not less than x.

Proof. Case 1: Suppose y ∈ R+\Z+. Then there exists l ∈ Z+ such that

l < y < l + 1 .

Take c > 1 such that

l < cy < l + 1 .

Then

dcye − 1 = l + 1− 1 = l < y .

Case 2: Suppose y ∈ Z+. Take c > 1 such that

cy < y + 1 .

Then

dcye − 1 = y + 1− 1 = y .

�

We will need the following estimate. For any 0 ≤ a < b and u ∈ W 1
2 ([a, b]),

|u(x)|2

|x|
≤ C(κ)

(∫ b

a

|u′(t)|2 dt+ κ

∫ b

a

|u(t)|2

|t|2
dt

)
, ∀x ∈ [a, b], (3.8)

where

C(κ) =
1

2κ

(
1 +
√

1 + 4κ
b
√

1+4κ + a
√

1+4κ

b
√

1+4κ − a
√

1+4κ

)
(3.9)

(see [9, Appendix A]). In the case a = 0, one should take x > 0 and assume that
u(0) = 0, since otherwise the right-hand side of the above inequality is infinite.
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4. Proof of Theorem 2.1

Let

X := W 1
2 (R), X0 := {u ∈ X : u(0) = 0} ,

X1 :=

{
u ∈ W 1

2,loc(R) : u(0) = 0,

∫
R
| u′(x) |2 dx <∞

}
.

Then, dim(X/X0) = 1 and X0 ⊂ X1. Let EX,µ, EX0,µ, and EX1,µ denote the forms∫
R
| u′(x) |2 dx−

∫
R
| u(x) |2 dµ(x)

on the domains X ∩ L2(R, dµ), X0 ∩ L2(R, dµ) and X ∩ L2(R, dµ) respectively.
Then

N−(ER,µ) = N−(EX,µ) ≤ N−(EX0,µ) + 1 ≤ N−(EX1,µ) + 1 (4.1)

(see (2.1)). An estimate for the right hand of (4.1) is presented in [9] (see also
[11]) for the case when µ is absolutely continuous with respect to the Lebesgue
measure. We follow a similar argument. It follows from Hardy’s inequality (see,
e.g., [6, Theorem 327]) that∫

R
|u′(x)|2 dx+ κ

∫
R

|u(x)|2

|x|2
dx ≤

∫
R
|u′(x)|2 dx+ 4κ

∫
R
|u′(x)|2 dx

= (4κ+ 1)

∫
R
|u′(x)|2 dx, ∀u ∈ X1, ∀κ ≥ 0.

Hence

N−(EX1,µ) ≤ N−(Eκ,µ), (4.2)

where

Eκ,µ[u] :=

∫
R
|u′(x)|2 dx+ κ

∫
R

|u(x)|2

|x|2
dx− (4κ+ 1)

∫
R
|u(x)|2 dµ(x),

Dom (Eκ,µ) = X1 ∩ L2 (R, dµ) .

It follows from (4.1) and (4.2) that

N−(ER,µ) ≤ N−(Eκ,µ) + 1. (4.3)

Let

In := [2n−1, 2n], n > 0, I0 := [−1, 1], In := [−2|n|,−2|n|−1], n < 0.

The variational principle (see (3.1)) implies

N−(Eκ,µ) ≤
∑
n∈Z

N−(Eκ,µ,n), (4.4)

where

Eκ,µ,n[u] :=

∫
In

|u′(x)|2 dx+ κ

∫
In

|u(x)|2

|x|2
dx− (4κ+ 1)

∫
In

|u(x)|2 dµ(x),

Dom (Eκ,µ,n) = W 1
2 (In) ∩ L2 (In, dµ) , n ∈ Z \ {0},

Dom (Eκ,µ,0) = {u ∈ W 1
2 (I0) : u(0) = 0} ∩ L2 (I0, dµ) .



NEGATIVE EIGENVALUES OF ONE-DIMENSIONAL SCHRÖDINGER OPERATORS 13

Let n > 0. For any c > 1 and N ∈ N, by Lemma 3.5 there exists a subspace
LN ∈ Dom (Eκ,µ,n) of co-dimension N such that∫

In

|u(x)|2 dµ(x) ≤ c

(
|In|
N2

µ (In)

)∫
In

|u′(x)|2 dx, ∀u ∈ LN .

If

c(4κ+ 1)
|In|
N2

µ (In) ≤ 1,

then Eκ,µ,n[u] ≥ 0, ∀u ∈ LN , and N−(Eκ,µ,n) ≤ N . Let

An :=

∫
In

|x| dµ(x), n 6= 0, A0 :=

∫
I0

dµ(x).

Since |In|
∫
In
dµ(x) ≤ An, n 6= 0, it follows from the above that

c(4κ+ 1)An ≤ N2 =⇒ N−(Eκ,µ,n) ≤ N.

Hence

N−(Eκ,µ,n) ≤
⌈√

c(4κ+ 1)An
⌉
, (4.5)

where d·e denotes the ceiling function, i.e. dae is the smallest integer not less
than a. Suppose suppµ ∩ In 6= {2n−1}, i.e., µ|In 6= const δ2n−1 . Then

|In|
∫
In

dµ(x) < An .

Take c > 1 such that

c|In|
∫
In

dµ(x) ≤ An .

Then applying Lemma 3.5 with this c implies

N−(Eκ,µ,n) ≤
⌈√

(4κ+ 1)An
⌉
. (4.6)

If µ|In = const δ2n−1 6= 0, then∫
In

|u(x)|2 dµ(x) = 0

on the subspace of co-dimension one consisting of functions u ∈ W 1
2 (In) such that

u(2n−1) = 0, and clearly (4.6) holds. Finally, if µ|In = 0, then (4.6) takes the
form 0 ≤ 0.

If µ|In 6= 0, the right-hand side of (4.6) is at least 1, so one cannot feed it
straight into (4.4). One needs to find conditions under which N−(Eκ,µ,n) = 0. By
(3.8), we have that∫

In

|u(x)|2 dµ(x) ≤ C0(κ)

∫
In

|x| dµ(x)

(∫
In

|u′(x)|2 dx+ κ

∫
In

|u(x)|2

|x|2
dx

)
= AnC0(κ)

(∫
In

|u′(x)|2 dx+ κ

∫
In

|u(x)|2

|x|2
dx

)
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for all u ∈ W 1
2 (In), where

C0(κ) =
1

2κ

(
1 +
√

1 + 4κ
2
√

1+4κ + 1

2
√

1+4κ − 1

)

(cf. (3.9)).
Hence N−(Eκ,µ,n) = 0, i.e. Eκ,µ,n[u] ≥ 0, provided An ≤ Φ(κ), where

Φ(κ) :=
1

(4κ+ 1)C0(κ)
=

2κ

4κ+ 1

(
1 +
√

4κ+ 1
2
√

4κ+1 + 1

2
√

4κ+1 − 1

)−1

.

The above estimates for N−(Eκ,µ,n) clearly hold for n < 0 as well, but the case
n = 0 requires some changes. Since u(0) = 0 for any u ∈ Dom (Eκ,µ,0), one can
use the same argument as the one leading to (4.5), but with two differences: a)
LN can be chosen to be of co-dimension N −1, and b) |I0|

∫
I0
dµ(x) = 2A0. This

gives the following analogue of (4.5)

N−(Eκ,µ,0) ≤
⌈√

2c(4κ+ 1)A0

⌉
− 1 .

for any c > 1. We can choose c > 1 such that

N−(Eκ,µ,0) ≤
√

2(4κ+ 1)A0

(see Lemma 3.6). It is also easy to see that the implication An ≤ Φ(κ) =⇒
N−(Eκ,µ,n) = 0 remains true for n = 0. Now it follows from (4.3) and (4.4) that

N−(ER,2µ) ≤ 1 +
∑

{n∈Z\{0}: An>Φ(κ)}

⌈√
(4κ+ 1)An

⌉
+
√

2(4κ+ 1)A0 , (4.7)

and one can drop the last term if A0 ≤ Φ(κ). The presence of the parameter κ
in this estimate allows a degree of flexibility. In order to decrease the number
of terms in the sum in the right-hand side, one should choose κ in such a way
that Φ(κ) is close to its maximum. A Mathematica calculation shows that the
maximum is approximately 0.092 and is achieved at κ ≈ 1.559. For values of κ
close to 1.559, one has

An > Φ(κ) =⇒
√

(4κ+ 1)An >
√

(4κ+ 1)Φ(κ) ≈ 0.816.

Since dae ≤ 2a for a ≥ 1/2, (4.7) implies

N−(ER,µ) ≤ 1 + 2
√

(4κ+ 1)
∑

An>Φ(κ)

√
An

with κ ≈ 1.559. Hence

N−(ER,µ) ≤ 1 + 5.38
∑

{n∈Z, An>0.092}

√
An .
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