dc.contributor.author | Mwesigye, Feresiano | |
dc.contributor.author | Truss, John K. | |
dc.date.accessioned | 2021-05-03T09:21:49Z | |
dc.date.available | 2021-05-03T09:21:49Z | |
dc.date.issued | 2010-03-18 | |
dc.identifier.citation | Mwesigye, F., & Truss, J. K. (2010). Countably categorical coloured linear orders. Mathematical Logic Quarterly, 56(2), 159-163. | en_US |
dc.identifier.uri | http://ir.must.ac.ug/xmlui/handle/123456789/744 | |
dc.description.abstract | In this paper, we give a classification of (finite or countable) ℵ0-categorical colored linear orders, generalizing Rosenstein’s characterization of ℵ0-categorical linear orderings. We show that they can all be built from colored singletons by concatenation and Qn-combinations (for n ≥ 1). We give a method using coding trees to describe all structures in our list. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Math. Log. Quart | en_US |
dc.subject | Coding tree | en_US |
dc.subject | colours | en_US |
dc.subject | coloured linear orderings | en_US |
dc.subject | classification | en_US |
dc.subject | ℵ0-categorical linear orderings | en_US |
dc.title | Countably categorical coloured linear orders | en_US |
dc.type | Article | en_US |