dc.contributor.author | MWESIGYE, F | |
dc.contributor.author | TRUSS, J.K. | |
dc.date.accessioned | 2021-05-03T09:56:26Z | |
dc.date.available | 2021-05-03T09:56:26Z | |
dc.date.issued | 2018-01-02 | |
dc.identifier.citation | Mwesigye, F., & Truss, J. K. (2018). Ehrenfeucht-Fraisse games on a class of scattered linear orders. arXiv preprint arXiv:1801.00627. | en_US |
dc.identifier.uri | http://ir.must.ac.ug/xmlui/handle/123456789/748 | |
dc.description.abstract | Two structures A and B are n-equivalent if player II has a winning strategy in the n-move Ehrenfeucht-Fra¨ıss´e game on A and B. In earlier papers we studied n-equivalence classes of ordinals and coloured ordinals. In this paper we similarly treat a class of scattered order-types, focussing on monomials and sums of monomials in! And it’s reverse! _. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | arXiv preprint arXiv | en_US |
dc.subject | SCATTERED LINEAR ORDERS | en_US |
dc.subject | GAMES | en_US |
dc.subject | Ehrenfeucht-Fra¨ıss´e game | en_US |
dc.subject | coloured ordinals | en_US |
dc.title | Ehrenfeucht-fra¨ iss´e games on a class of Scattered linear orders | en_US |
dc.type | Article | en_US |