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Abstract 
Background: Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell 

morphology especially for cervical cancer screening from pap-smears. Manual assessment of pap-smears is labour 

intensive and prone to interobserver variations. Computer-aided methods, which can significantly improve the 

objectivity and reproducibility, have attracted a great deal of interest in recent literature. A critical prerequisite in 

automated analysis of pap-smears is nucleus and cytoplasm segmentation, which is the basis of cervical cancer 

screening. This paper articulates a potent approach to the segmentation of cervical cells into nucleus and cytoplasm 

using a quadtree decomposition approach with statistical measures. 

Results: Choosing an appropriate quadtree decomposition strategy was a great challenge and a novel task in the 

proposed approach. The image is pre-processed using an enhanced median filter and is decomposed based on the 

mean, maximum entropy and the variance statistical measures of the pixels in the subtree. As a result, highly 

efficient and segmentations of acceptable performance were obtained. Comparison of the segmented nucleus and 

cytoplasm with the ground truth nucleus and cytoplasm segmentations resulted into a Zijdenbos similarity index 

of greater than 0.9034 and 0.9498 for nucleus and cytoplasm segmentation respectively.  

Conclusion: Given the accuracy of the classifier in segmenting the nucleus which plays an important role in 

cervical cancer diagnosis and classification, the classifier can be adapted for automated systems for cervical cancer 

diagnosis and classification. The method serves as a basis for first level segmentation of cervical cells for diagnosis 

and classification of cervical cancer from pap-smears. 
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1.0 Background 

Cervical cancer is one of the most deadly and common forms of cancer among women in the world [1]. About 

85% of the cases occur in developing countries [2]. Cervical cancer is preventable through a regular simple pap-

smear screening test and there have been numerous attempts to automate the analysis of pap-smears since its 

introduction more than 70 years ago [3]. However, in many of the low middle-income countries, a pap-smear 

analysis is a manual process. This manual analysis is carried out by experienced cytotechnicians who are also very 

few in low middle-income countries. The manual visual examination of the pap-smears is time-consuming, labour 

intensive, subjective and error prone [4]. Due to the limitations of the manual pap-smear analysis, it is beneficial 

to develop a computer-assisted diagnosis system to make the pap-smear test more accurate and reliable.  

Cell segmentation is one of the most important stages of such an automated system. However, segmentation of 

the cervical cells in a pap-smear digital image is an ill-posed problem. Very few of the current methods can achieve 

complete nucleus and cytoplasm segmentation due to a number of challenges involved in delineating individual 

nucleus and cytoplasm with severe overlap and poor contrast [5].  

High-tech light and electron microscopes are capable of acquiring quality pap-smear images, but quantitatively 

evaluating these images often involves manually annotating structures of interest in the cell. This process is error-

prone, time-consuming and is becoming the main bottleneck in the automated pap-smear analysis [6]. Cell nuclei 

segmentation from pap-smear images is an important image processing task necessary for automated cervical 

cancer screening due to the fundamentally important role of nuclei in cervical cancer cell [7]. The success of 

automated cervical cancer classification is often a direct consequence of the accuracy of the nucleus and cytoplasm 

segmentation. A cell segmentation paradigm involves separating a cell into regions or contours corresponding to 

different objects in the cell [8]. This is usually achieved by identifying common properties in an image or 

identifying differences between regions (edges) in the cell.  

As the Biomedical Engineering field is growing, new imaging modalities and staining techniques are being 

developed, hence many existing methods specifically designed for current imaging modalities and staining 

techniques may not work well. Therefore, considerable resources have to be spent to modify existing methods or 

develop entirely new nuclei and cytoplasm segmentation methods to better suit the new applications. This study 

proposes a cervical cell nucleus and cytoplasm segmentation algorithm based on a quadtree region segmentation 

and statistical measures. The goal is to provide a method that can be used effectively for segmenting nuclei and 

cytoplasm from a cervical cell for automated diagnosis and classification of cervical cancer from pap-smears. 
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1.1 Review of some of the segmentation approaches applied to cervical cells. 

Image segmentation techniques can be classified as edge based, region growing, region split, watershed, 

thresholding, deformable model fitting and morphology-based [9]. A number of surveys have been carried out on 

the different image segmentation approaches. Shaoo et.al. [10] surveyed only segmentation algorithms based on 

thresholding and attempted to evaluate the performance of some thresholding algorithms using some uniformity 

and shape measures. Eri et al. [11] presented a survey of cell segmentation techniques 50 years down the road. He 

showed that threshold based methods were the commonest form of segmentation techniques used for cell 

segmentation between 1960 and 2015. William et al. [12] presented a survey of image analysis and machine 

learning techniques for automated cervical cancer screening from pap-smear images.  

The simplest property that pixels in an image can share is intensity. So many approaches [6-8] segment the image 

through thresholding which involves separation of light and dark regions. Wong et al [9] proposed an entropy 

based thresholding method. However, the results obtained by this approach were found to be biased. Ortiz et al. 

[10] presented an edge-based deformable model for cell segmentation. The approach utilized gradient information 

to capture nuclei and cytoplasm surfaces. However, the object boundaries were very blurred susceptible to noise. 

Zhang et al. [15] presented a nuclei segmentation algorithm where HSV colour space was used to enhance the 

contrast between nuclei and cytoplasm and nuclei segmentation was achieved using a concave point based 

algorithm. Plissiti et al. [16] presented an approach for cell nuclei segmentation where the detection of the 

candidate nuclei was based on a morphological operations and the segmentation was accomplished with the 

application of the watershed transform. Lin et al. [17] presented a novel nucleus and cytoplasm segmentation 

technique where image enhancement was achieved using a two-group object enhancement method. 

Plissiti et al. [18] presented a fuzzy C-means algorithm  for cervical cell segmentation and clustering. In a paper 

by Yang et al. [19], the nucleus and cytoplasm were segmented using an edge enhancement contour detector. Kale 

et al. [20] determined the nucleus optimal segmentation threshold based on the stability of the cell perimeter. 

Bergmeir et al. [21] developed an algorithm that localizes cell nuclei based on a dynamic voting scheme. Pai et 

al. [7] developed a method based on maximal grey level gradient difference for accurate segmentation of the 

nucleus and cytoplasm in pap-smear images. Muhimmah et al. [22] implemented a method based on morphology 

and watershed transformation and Li et al. [23] extracted nucleus and cytoplasm from pap-smear images using a 

novel radiating-gradient-vector-flow snake algorithm. 



4 

 

1.2 Region Quadtree Segmentation  

The quadtree is a data structure concept that refers to a hierarchical collection of maximal blocks that partition a 

region. It was first introduced by Hanan et.al [24]. The item to be partitioned is the root quadtree which is 

recursively partitioned according to predefined criteria [24]. Each step of decomposition produces four new 

quadtrees of the same size that are hierarchically associated with their parent quadtree based on a predefined 

partitioning criteria. Decomposition finishes whenever there are no more quadtrees to be partitioned or when the 

quadtrees have reached their minimum size. Quadtree-based approaches can present excellent results when 

applied in medical image segmentation [25-26]. They are becoming commonly used due to their ability to discard 

very quickly large amounts of information in an easy and efficient way, while preserving image details [27].  

A quadtree is obtained by separating the image into regions based on a given similarity measure, then merge 

regions based on the same or a different similarity measure. This is achieved through recursive decomposition of 

the image through the following steps. 

1. Determine some similarity measure criteria e.g., mean, standard deviation, variance, texture, etc. 

2. Begin with the full image and then split it into 4 partitions (sub-images). 

3. Analyse each sub-image. 

4. If the sub-image is not uniform, then divide it into 4 new sub-images 

5. After each iteration, compare neighbouring regions and the sub-images 

6.  Then merge if uniform according to the similarity measure. 

Due to the efficiency of the quadtree approach in image segmentation, researchers are attempting to use it for 

image segmentation. Gerardo et al. [28] presented a simplified quadtree image segmentation for image annotation. 

The method was able to efficiently divide the image into homogeneous segments by merging adjacent regions 

using border and colour information. Spann et al. [29] presented a quad-tree approach to image segmentation by 

combining a nonparametric classifier, based on a clustering algorithm, with a quad-tree representation of the 

image. Reza et al. [30] presented a quadtree-based blood vessel detection algorithm using RGB components in 

fundus images. The technique applied the quadtree on the green component only of the images and the results 

were promising.  

This paper explores the applicability of the quadtree for cervical cell segmentation. It presents a quadtree-based 

algorithm for nucleus and cytoplasm segmentation of cervical cells from pap-smear images using statistical 

measures to guide the quadtree decomposition. Segmentation of nucleus and cytoplasm can be used for automated 

diagnosis and classification of cervical cancer from pap-smear images. 
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2.0 Results 

2.1 Nucleus and Cytoplasm segmentation  

Promising results for nucleus and cytoplasm segmentations were obtained using the proposed quadtree algorithm. 

Application of morphological operations further improved the segmentation by filling small holes in the nucleus 

and cytoplasm segmentations and also removing pixels around the boundaries of the nucleus and cytoplasm as 

shown in Figure 1. 

 
Figure 1: Nucleus and Cytoplasm segmentations using a Quadtree algorithm and Morphological operations 

 
To evaluate the accuracy of the nucleus and cytoplasm segmentations (Figure 2), features were extracted from the 

nucleus and cytoplasm and compared with the ground truth segmentation features that were extracted using 

CHAMP commercial segmentation software by Jantzen et al. [31]. 

 
Figure 2: Nucleus and Cytoplasm segmentations using a Quadtree algorithm 

The nucleus and cytoplasm features (areas, shortest diameters, longest diameters, roundness and perimeters) were 

extracted from the segmented cervical cells and compared with the ground truth measurements. The percentage 

errors in the nucleus area (NA), nucleus shortest diameter (NSD), nucleus longest diameter (NLD), nucleus 

roundness (NR), nucleus perimeter (NP), nucleus location (NL), cytoplasm area (CA), cytoplasm shortest 
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diameter (NSD), cytoplasm longest diameter (CLD), cytoplasm roundness (CR) and cytoplasm perimeter (CP) 

were calculated and shown in Table 1. 

Table 1: Percentage errors between the ground-truth and extracted measurements for selected cells. 

ID NA NSD NLD NR NP NL CA CSD CLD CR CP 

1 0.110 0.074 0.075 0.024 0.412 0.070 0.084 0.235 0.002 0.454 0.269 

2 0.149 0.152 0.147 0.368 0.050 0.147 0.072 0.486 0.119 0.168 0.394 

3 0.046 0.294 0.126 0.321 0.376 0.122 0.005 0.090 0.013 0.298 0.232 

4 0.110 0.159 0.377 0.289 0.296 0.432 0.023 0.297 0.206 0.102 0.324 

5 0.214 0.348 0.237 0.469 0.131 0.269 0.003 0.362 0.243 0.276 0.378 

6 0.035 0.033 0.315 0.079 0.164 0.474 0.042 0.314 0.210 0.034 0.232 

7 0.144 0.024 0.195 0.103 0.158 0.247 0.002 0.113 0.368 0.201 0.222 

8 0.027 0.298 0.064 0.280 0.018 0.173 0.105 0.344 0.122 0.094 0.175 

9 0.212 0.373 0.016 0.295 0.371 0.478 0.112 0.143 0.358 0.220 0.260 

10 0.106 0.259 0.105 0.320 0.269 0.154 0.061 0.300 0.250 0.352 0.174 

11 0.076 0.266 0.018 0.117 0.270 0.109 0.193 0.138 0.278 0.166 0.264 

The average percentage errors of 0.112, 0.207, 0.152, 0.242, 0.229, 0.243, 0.064, 0.256, 0.197, 0.215 and 0.266 

were obtained for the NA, NSD, NLD, NR, NP, NL, CA, CSD, CLD, CR and CP respectively. A box plot was 

obtained to show the shape of the distribution of the percentage error, its central value, and its variability in each 

extracted feature as shown in Figure 3. 

 
Figure 3: Boxplot for the percentage error in the extracted features.  

The variations of the percentage errors in features extracted per image were analysed and are shown in Figure 4. 
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Figure 4: Percentage error in the features extracted per image.  

The images in the Herlev dataset belong to 7 classes and were used to test the ability of the Quadtree 

decomposition algorithm to accurately segment the nucleus regions in each class. As done in [20] and  [23], we 

also use the segment with the highest overlap with the ground truth nucleus region for comparison using the ZSI 

(Zijdenbos similarity index) which is given by Eq. (1). 𝑍𝑆𝐼 = 2 #{𝑋 𝑛 𝑌}#{𝑋}+#{𝑌}                       (1) 

where X and Y are two sets of segmented pixels. The ZSI computed was compared with that obtained by Asli et 

al [20] and Kuan et al. [23] who also tested their nuclei segmentation algorithm on the Herlev dataset.  The ZSI 

for the quadtree algorithm has a mean larger than 0.9034 and standard deviation smaller than 0.1735 for all the 7 

classes, as shown in Table 2. It can be observed that the quadtree algorithm produces segmentations of acceptable 

performance compared to the methods in [20] and [23]. 

Table 2: Comparison of the nucleus segmentation accuracy with methods in [20] and [23] 

   cells Asli et al. [20] Kuan et al.  [23] Quadtree 

Superficial squamous 74 0.93±0.05  0.9524±0.0013  0.9592±0.0184 

Intermediate squamous 70 0.95±0.03 0.9578±0.0009 0.9501±0.0726 

Columnar 98 0.90±0.07 0.9197±0.0029 0.9034±0.1735 

Mild dysplasia 182 0.94±0.08 0.9359±0.0045 0.9239±0.0375 

Moderate dysplasia 146 0.93±0.08 0.9334±0.0038 0.9342±0.0826 

Severe dysplasia 197 0.92±0.10 0.9333±0.0030 0.9147±0.0443 

Carcinoma in situ 150 0.90±0.12 0.9277±0.0039 0.9165±0.1530 
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The performances of the quadtree algorithm for cytoplasm segmentation was also evaluated using ZSI and 

compared with results obtained by Shys et.al [19] and Kuan et al [23] who also compared the performance of their 

cytoplasm segmentation algorithms on Herlev dataset.  The statistical results are shown in Table 3. 

Table 3: Comparison of the cytoplasm segmentation accuracy with methods in [19] and [23] 

Method μZSI±σZSI 

Shys et.al [19] 0.8992±0.0348 

Kuan et al  [23] 0.9545±0.0439 

Quadtree 0.9498±0.0921 

 

3.0 Discussion 

A median filter played a significant role in normalising the cervical cells for the quadtree decomposition algorithm. 

Unlike in many studies [37-39] where a smaller median filter is used, in this study, a large median filter (27×27) 

was applied for removing the objects superimposed on the cell background while leaving the very slow variations 

in the background relatively unchanged. This retrieved the objects of interest while yielding approximately 

uniform background intensity as shown in Figure.2. Similar to Abramoff et al. [40], application of morphology 

operations on the initial segmentation helped to overcome inaccuracies in the segmentation by closing small holes 

in the nucleus and cytoplasm segmentation and closing pixels around the boundaries. This research has shown 

that the development of an efficient quadtree decomposition criteria has the potential of producing excellent image 

segmentation as shown in Figure 5 which has also been reported by several studies [29,41-42].  

The quadtree decomposition algorithm was able to extract the nucleus and cytoplasm regions accurately and 

worked well for the different classes of images. The average percentage errors of 0.112, 0.207, 0.152, 0.242, 

0.229, 0.243, 0.064, 0.256, 0.197, 0.215 and 0.266 between the segmented images’ extracted features (nucleus 

area, nucleus shortest diameter nucleus longest diameter, nucleus roundness, nucleus perimeter, nucleus location, 

cytoplasm area, cytoplasm shortest diameter, cytoplasm longest diameter, cytoplasm roundness and cytoplasm 

perimeter) and the ground truth features show that the measurements are in agreement. From the results shown in 

Figure 7, it is observed that the algorithm is excellent at nucleus segmentation than the cytoplasm although 

acceptable results are also obtained for cytoplasm segmentation as compared to other studies. This is also shown 

by the least variations in the nucleus measurements shown in the boxplot. This could be attributed to the nucleus’ 

brightness compared to other regions. Comparison with other studies showed promising results with the 

implementation of a quadtree decomposition algorithm for cervical cell segmentation. Given the accuracy of the 
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classifier in segmenting the nucleus which plays an important role in cervical cancer diagnosis and classification, 

the classifier can be adapted for automated systems for cervical cancer diagnosis and classification.  

4.0 Conclusion 

A critical prerequisite in automated analysis of pap-smears is nucleus and cytoplasm segmentation, which is 

usually considered as the basis of cervical cancer screening from pap-smears. It provides support for various 

quantitative analyses including calculating cellular morphology, such as size, shape and texture. However, it is 

difficult to achieve a robust and accurate nucleus/cytoplasm segmentation. This paper articulates a potent 

approach to the segmentation of cervical cells into nucleus and cytoplasm using a quadtree with statistical 

measures. Choosing an appropriate quadtree decomposition strategy was a great challenge and a novel task in the 

proposed approach. As a result, highly efficient and segmentations of acceptable performance were obtained. 

Comparison of the segmented nucleus and cytoplasm with the ground truth nucleus and cytoplasm segmentations 

resulted into a Zijdenbos similarity index of greater than 0.9034 and 0.9498 for nucleus and cytoplasm 

segmentation respectively. The method serves as a basis for first level segmentation of cervical cells for diagnosis 

and classification of cervical cancer from pap-smear images using nucleus and cytoplasm features. 

5.0 Methods 

The proposed method was developed through a sequential approach depicted in Figure 5. 

5.1.1 Input Images. 

The dataset used in the work documented in this paper contains cells obtained from the Herlev University Hospital 

Cervical Cells Dataset prepared by Jantzen et al. [31]. The dataset contains 947 cervical cells that were obtained 

by skilled cytotechnicians using a microscope connected to a frame grabber and taken with a resolution of 

0.201µm/pixel. The images were segmented using CHAMP commercial software developed by DIMAC Imaging 

systems and then classified into 7 classes [31].  

 

Figure 5: The proposed Approach for segmentation of cervical cell Nuclei from pap-smear images 

5.1.2 Grayscale 

Since cervical cells are stained in different colours, the input images were first transformed into grayscale. The 

quadtree algorithm presented in this paper uses pixel level information for decomposition. The grayscale 
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conversion was carried out to ensure that the value of each pixel was a single sample representing only intensity 

information each pixel has. This made quadtree decomposition more efficient and reliable. The grayscale 

conversion was implemented using Eq. (2). 

                  𝑁𝑒𝑤 𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 𝑖𝑚𝑎𝑔𝑒 = ((0.3 ∗ 𝑅) + (0.59 ∗ 𝐺) + (0.11 ∗ 𝐵))                                                   (2) 

Where R=Red, G=Green and B=Blue colour contributions of the new image. 

5.1.3 Pre-processing. 

A pap-smear is stained for easy identification of cell nuclei [32]. The staining usually delineates the nuclei pretty 

well, however, the staining is not homogenous, as areas of condensation levels can vary across the chromosomes 

and uneven lighting across the field of view can make the nuclei appear granular [33]. In order to remove the 

noise, denoising was carried out on the original images using a median filter.  In general, the median filtering 

output is given by Eq. (3) as used in [22]. 

                                                𝑔(𝑥, 𝑦) = 𝑚𝑒𝑑{𝑓(𝑥 − 𝑖, 𝑦 − 𝑗), 𝑖, 𝑗 ∊ 𝑤}                                                              (3) 

where ),( yxf  and ),( yxg are the original and the output image respectively. w is a two-dimensional mask of 

size n x n. In order to improve the efficiency of the medium filter, an efficient median filter algorithm proposed 

by Manfred et al. [34] was implemented. The algorithm computes two neighbouring medians in one step using 

spatial coherence between the pixels. A large median filter (27×27) was applied for removing the objects 

superimposed on the cell background while leaving the very slow variations in the background relatively 

unchanged. To yield uniform background within, the difference between the original and the median filtered image 

was computed. This operation served to retrieve the objects of interest while yielding approximately uniform 

background intensity. The resultant filtered image is shown in Figure 6.    

  

Figure 6: Randomly selected original and median filtered cervical cell. 

5.1.4 Quadtree Decomposition  

A quadtree scanning of the full image is the core step of the proposed segmentation technique. However, the 

efficient median filter enhanced the decomposition process by reducing noise in the image. We adopt a split and 

merge quadtree decomposition strategy where the image is divided into four regions, and each of these regions is 

compared with their adjacent 4-neighbours using a comparison operator.  The image is recursively subdivided 

until smallest unit is reached and in this case it’s the pixel information. If two regions are evaluated as similar they 
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are merged. Regions that are not merged with any other region are divided into four new regions and the same 

comparison operation with their new neighbours is done. This process is performed recursively until there are no 

more regions to divide as shown in Figure 7.  

 

Figure 7: Quadtree decomposition 

Recent quadtree decomposition algorithms have been constructed by building a quadtree downwards from each 

image pixel and storing only the mean value of the subtree pixels in each node. However, mean alone gives no 

measure of uniformity which is essential in cervical cell segmentation. In the proposed method, the variance and 

maximum entropy statistical measures of the pixels at each node are stored during the decomposition process to 

overcome limitations of using only the mean. Hence at each node in the quadtree the algorithm stores the mean, 

maximum entropy and the variance of the pixels’ gray level in the subtree. A homogeneity threshold is 

automatically determined by the algorithm based on the variance maps of the neighbouring pixels.  This is 

achieved through the following steps:  

a) Construct a quadtree storing at each node the mean, maximum entropy and the variance of the pixel’s 

gray levels of its four children. 

b) Search from the root of the tree to find the node highest in the tree whose mean, maximum entropy and 

the variance are in the required range (as for the root node), and 

c) Use neighbour finding techniques to merge adjacent nodes whose mean is within the desired range. 

The mean (µ) of n-pixels in a subtree at a node, I (x, y) is represented by Eq. (4). 

          µ = ∑ 𝑖(𝑥, 𝑦)/𝑛                                                                                   (4) 

From equation 3, the variance can be defined by Eq. (5). 

          𝛼 = ∑ 𝑖(𝑥,𝑦)2𝑛 − µ2                                   (5) 

Image entropy is a statistical measure of randomness that can be used to characterize the texture of an image. 

Shannon's entropy [35] defined by Eq. (6) was used in this paper. 

                                                    𝐻(𝑠𝑚) = − ∑ 𝑝𝑛(𝑠𝑚). log2(𝑝𝑛(𝑠𝑚)), 𝑚 = 1, … . , 𝑀256𝑛=1                                    (6)                              
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where H(sm) is the entropy of the pixel intensity. The (pn(sm)) is the probability of a pixel having entropy sm, and 

m are all the possible entropy values. The probability density pn is calculated using the grey level histogram. 

After computation of the above statistical measures, the cervical cell images were segmented using the quadtree 

decomposition method searching for the node within the required mean, maximum entropy and variance range. 

To save search time, the highest uniform node in each subtree was recorded as the tree was being built. This 

eliminated the need for a search after the tree was built. The pixel segmentation was guided by the uniformity of 

the pixels in each node. The uniformity was recorded by adding a pointer β to each node in the tree which is a 

membership function for a fuzzy set (statistical measures) for that pixel. The pointer β was computed as follows: 

1. If a node (N) and all nodes in its subtree (SN) were out of range of the statistical measures (mean, 

maximum entropy and variance), then its pointer was set to null as shown in Eq. (7). 

                             𝐼𝑓 (𝑁 AND 𝑆𝑁) ∉ (𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠) 𝑡ℎ𝑒𝑛 𝛽 = 𝑁𝑢𝑙𝑙                                               (7) 

2. If a node was in range, then its pointer was set to point to itself as shown in Eq. (8). 

              𝐼𝑓 (𝑁)  ∊ (𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠) 𝑡ℎ𝑒𝑛 𝛽 = 𝛽                                                          (8) 

3. If a node was out of range, but some nodes in its subtree were in range, then its pointer was set to point 

to the highest node in its subtree which was within range as shown in Eq. (9). 

               𝐼𝑓 (𝑁)  ∉ (𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠) 𝐴𝑁𝐷 (𝑆𝑁)  ∊ (𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠) 𝑡ℎ𝑒𝑛 𝛽 = 𝑆𝑁𝑚𝑎𝑥              (9) 

The pointers helped in the segmentation of the cervical cell into the nucleus, cytoplasm and background based on 

pixel level information. Taking the node pointed to by the root, we used it as a seed and merged its neighbours 

and this was used for nucleus segmentation, setting the pointers of each merged nodes to null. We then extracted 

further regions by moving down the tree and processing similarly any nodes with non-null pointers which were 

then used for cytoplasm segmentation. To overcome some inaccuracies in the segmentations obtained, 

morphology operations were applied to these images. 

5.1.5 Morphology 

Morphology is a set-theory approach that considers an image as the elements of a set and process images as 

geometrical shapes [36]. It is a powerful technique for solving a number of problems in image analysis and 

computer vision including overcoming inaccuracies in segmentation. The two basic morphological operators are 

the erosion and the dilation based on Minkowski algebra [39]. A dilation followed by erosion is called a closing 

operation. Dilation operation of a grayscale image by a two-dimensional point A is defined by Eq. (10) as; 

                                 (𝑔𝐴)(𝑟, 𝑐) = max {g(𝑟 − 𝑘, 𝑐 − 𝑙)|(𝑘, 𝑙) ∊ 𝐴                                                                       (10) 

Erosion of the grayscale image by a two-dimensional point A is defined by Eq. (11),     

                                 (𝑔 𝜃𝐴)(𝑟, 𝑐) = min {g(𝑟 + 𝑘, 𝑐 + 𝑙)|(𝑘, 𝑙) ∊ 𝐴                                                                        (11) 
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where g is the grayscale image, A is a structuring element [40] and (r, c) is the pixel of the image g, (k, l) is the 

size of the element A. In this paper, the closing operation was utilised to overcome the inaccuracies in the quadtree 

segmentation by fusing narrow breaks around the nucleus and cytoplasm. It was also used to fill small holes and 

gaps in the image. Closing is mathematically defined by Eq. (12). 

 𝑔 • 𝐴 = [𝑔 𝐴] ѳ𝐴                                                                                                               (12) 

where ѳ is an erosion, is dilation, g is a binary image and A is structuring element. After the morphological 

operation, image shape features, such as blurred edges, holes, corners, wedges and cracks were removed. 

 

List of Abbreviations 

WEKA:  Waikato Environment for Knowledge Analysis 

TWS:   Trainable Weka Segmentation  

FRF:   Fast Random Forest  

FCM:   Fuzzy C-Means 
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Figure Captions 

Figure. I: Nucleus and Cytoplasm segmentations using a Quadtree algorithm and Morphological operations 

Figure 2: Nucleus and Cytoplasm segmentations using a Quadtree algorithm Figure 3: Quadtree decomposition 

Table 1: Percentage errors between the ground-truth and extracted measurements for selected cells. 

Figure 3: Boxplot for the percentage error in the extracted features 

Figure 4: Percentage error in the features extracted per image 

Table 2: Comparison of the nucleus segmentation accuracy with methods in [20] and [23] 

Table 3: Comparison of the cytoplasm segmentation accuracy with methods in [19] and [23] 

Figure 5: The proposed Approach for segmentation of cervical cell Nuclei from pap-smear images 

Figure 6: Randomly selected original and median filtered cervical cell. 

Figure 7: Quadtree decomposition 

 

 

 

 

 

 

 


