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Abstract
Background: Magnetic Resonance Imaging (MRI) and spectroscopic techniques are frequently employed
for clinical diagnostics as well as basic research in areas like cognitive neuroimaging. MRI is a widely
used imaging modality for intracranial diseases. However, conventional MRI is expensive to purchase,
maintain and sustain, limiting their use in low-income countries. Low field MRI can provide an
economical, long-term, and safe imaging option to high-field MRI and computed tomography (CT) for
brain imaging. This paper offers a review of the image reconstruction techniques used in low field
magnetic resonance imaging (MRI). It is aimed at familiarizing the readers with the relevant knowledge,
literature, and the latest updates on the state-of-art image reconstruction techniques that have been used
in low field MRI citing their strengths, and areas for improvement.

Methods: An in-depth keyword-based search was undertaken for publications on image reconstruction
approaches in low-field MRI in the top scientific databases such as Google Scholar, Wiley, Science Direct,
Springer, IEEE, Scopus, Nature, Elsevier, and PubMed throughout this study. This research also contained
relevant postgraduate theses. For the selection of relevant research publications, the PRISMA flow
diagram and protocol were also used.

Results: Studies revealed that Inhomogeneities are present in low field MRI, implying that the traditional
method of acquiring the image, using the inverse Fourier Transform, is no longer viable. The image
reconstruction techniques reviewed include iterative methods, dictionary learning methods, and deep
learning methods. Experimental results from the literature revealed improved image quality of the
reconstructed images using data driven and learning based methods (deep learning and dictionary
learning methods).

Conclusion: The study revealed that there is limited literature on the image reconstruction approaches in
low field MRI even if though there are sufficient studies on the subject in high field MRI. Data driven and
learning based methods improves image reconstruction quality when compared to analytic and iterative
approaches.  

1. Background
In humans, magnetic resonance imaging (MRI) and spectroscopic techniques are frequently employed for
clinical diagnostics [1] as well as basic research in areas like cognitive neuroimaging [2]. Also, MRI is a
widely used imaging modality for intracranial diseases. MRI technology is used in medicine to visualize
the structure of human anatomy in a noninvasive and nonionizing way [3] [4] [5] [6] [7]. The following are
the classifications of MRI systems based on the strength of the magnetic field they produce (in Tesla):
Ultra-high field > 3T, high field (1–3T), middle (0.5–1T), low field (0.1–0.5T), and ultra-low field (<0.1–
0.1T) [8] [9]. Traditional MRI scanners, on the other hand, are costly to purchase and maintain, limiting
their use in low-income countries [8]. In developing countries, low-field MRI equipment can provide an
economical, long-term, and safe imaging option to high-field MRI and computed tomography (CT) for
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brain imaging [8]. Moreover, Hömmen et al. [10] revealed that existing ultra low-field MRI systems can
produce a sufficient signal-to-noise ratio (SNR) required for clinical imaging. Huang et al. [11] revealed
that portable low-cost MRI systems can provide a point of care and timely MRI diagnosis especially to
low-income countries where there are less than 0.1 MRI scans per 1,000,000 people [12] [13]. Several
studies [8], [14] have indicated that low-field MRI scanners have a low signal-to-noise ratio (SNR),
resulting in noisy images. This was supported by Hömmen et al. [10] that found out that image artifacts
influence the reconstruction quality.  

1.1 Image Enhancement
Humans employ their five senses to comprehend their surroundings (sight, hearing, touch, smell, and
taste). The most powerful of the five senses is sight. Receiving and evaluating images accounts for the
majority of human cerebral activity, with image processing accounting for more than 99% of all brain
activity [15]. Images are not self-explanatory; instead, interpreting them takes professional competence,
which must evolve in tandem with the growing variety of imaging techniques. Image enhancement is a
technique for improving the quality of medical images so that they can be viewed and interpreted more
readily. Image enhancement is a subjective field of image processing in which the best method is
determined by human perception based on the produced results. The goal of image enhancement is to
bring out hidden detail or highlight only the features of interest in an image. This is usually done by
increasing the contrast so that the enhanced image can look better than the original [16]. 

Low magnetic fields (particularly in low field MRI) are the conditions that cause image quality to
deteriorate during imaging. Several solutions have been offered to remedy the problem of image quality
degradations, including sharpening, deburring, noise reduction, and contrast enhancement, among
others [17]. Contrast enhancement is a technique used by researchers to increase the quality of images.
Image enhancement techniques are a group of approaches that aim to improve the visual look of an
image or transform it into a format that is better suitable for human or computer analysis [18].
Enhancement procedures are used to reduce image noise and increase the contrast of features of
interest. When noise levels are high, it might be difficult to evaluate images where the contrast between
normal and sick tissue is fine. In many cases, image enhancement improves image quality and makes
diagnosis easier. Enhancement techniques are commonly used to make images more sharp for human
observers, but they can also be used as a pre-processing step for automated analysis. Image
enhancement techniques are mathematical strategies for enhancing the quality of an image. The result is
a new image that, in certain ways, shows some features better than they appeared in the original image.
Multiple processed copies of the original image can also be obtained or computed, each highlighting a
distinct characteristic. If applied incorrectly, enhancement techniques can increase noise while increasing
contrast, lose tiny details and edge sharpness while removing noise, and produce errors in general. To
achieve the finest possible augmented image, users must be mindful of these hazards. Enhancement of
specific aspects in photographs is frequently accompanied by unfavorable effects. It's possible that
crucial image data has been lost, or that the upgraded image is a poor representation of the original.
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Furthermore, it is unrealistic to expect enhancement techniques to supply information not present in the
original image. Noise or other unpleasant image components may be increased without the user's
knowledge if the image does not include the characteristic to be enhanced. However, image enhancement
can have unintended consequences, such as the loss of important information or a poor depiction of the
original image. However, some image enhancement techniques cause problems such as noise creation,
over-enhancing, feature loss, brightness, and darkening [17]. Furthermore, image enhancement
characteristics do not convey information that is not present in the original image if a given feature to be
enhanced is not present in the original image [19].

There are two types of image enhancement: spatial domain and frequency domain. The image plane is
referred to as the spatial domain, and techniques in this area are focused on directly manipulating pixels
in an image. Frequency domain processing approaches work by altering an image's Fourier transform. It's
not uncommon to see enhancement strategies that combine procedures from these two categories [21].
Procedures that work directly on the pixels that make up the image are known as spatial domain
approaches. The expression in equation (1) is used for spatial domain processes:

where f(x,y) denotes the input image, g(x,y) is the processed image, and T denotes an operator on f
defined across a range of values (x,y). T can also conduct operations on a group of images, such as
pixel-by-pixel summation of K images for noise reduction [16]. Each location (x, y) receives the operator T,
which produces the output g(x,y)  at that position. Only the pixels in the area of the image encompassed
by the neighbourhood are used in the process. Image reconstruction is one of the techniques used in
image enhancement.  

1.2 Image Reconstruction
The technique of producing an image from a series of measurements using a computer approach is
known as image reconstruction. Most imaging systems in scientific or medical applications use image
reconstruction to create image [20]. In MRI, the image reconstruction approach uses k-space data. All of
the information needed to reconstruct an image is contained in K-space data, as well as a thorough
understanding and classification of the reconstruction method and imaging properties [21]. In k-space
data, low-frequency signals are placed in the center of the recorded data, and these low-frequency signals
carry contrast information, whilst high-frequency signals are scattered around the center, and these high-
frequency signals include spatial resolution or sharpness information. The field of image reconstruction
is undergoing a paradigm shift right now. Transform-based or optimization-based techniques have
typically dominated image reconstruction. Data-driven machine learning methods, notably deep learning
and dictionary learning, have a considerable advantage over earlier methods for image reconstruction,
according to recent study. 
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1.3 Research Objectives and Outline
It is vital to do a systematic review of the image reconstruction approaches utilized in low-field MRI, as a
result of recent breakthroughs and numerous influential works in the field. The purpose of this study is to
provide readers with important knowledge, literature, and the most recent updates on state-of-the-art
image reconstruction techniques that have been employed in low field MRI, as well as their objectives,
outcomes, and areas for improvement. The research was limited to the use of image reconstruction
techniques in low-field MRI; high-field MRI was not included in the study.

The rest of the article is organized as follows. In section 2, the methodology is discussed; section 2.1
discusses the identification of the Articles for Review; section 2.2 discusses inclusion criteria, and section
2.3 discusses exclusion criteria. In section 3, results are discussed, section 3.1 discusses the motivation
for use of low field MRI, 3.2 discusses the need for image reconstruction in low field MRI, and 3.3
discusses the image reconstruction techniques in low field MRI, and discussion and conclusions are
given in section 4.

2. Methods

2.1 Identification of the Articles for Review
Several review studies argue that reviewing publications from high-quality data sources is critical [22],
[23], and [24]. An in-depth keyword-based search was undertaken for publications on image
reconstruction approaches in low-field MRI in the top scientific databases such as Google Scholar, Wiley,
Science Direct, Springer, IEEE, Scopus, Nature, Elsevier, and PubMed throughout this study. This research
also contained relevant postgraduate theses. 

2.2 Inclusion criteria
Studies that presented image reconstruction approaches in low-field MRI were considered during this
study. For the selection of relevant research publications, the PRISMA flow diagram and protocol [25]
 were also used. This method consists of four steps: (i) the identification phase, which entailed gathering
articles from diverse sources; (ii) the screening procedure. During this phase, duplicate articles were
eliminated, as well as ones that were insufficient. (iii) Phase of Eligibility We looked at articles to see if
they were eligible for additional review. Articles that were deemed ineligible were omitted. (iv) The
included phase is the final phase. During this phase, the articles that were included in the study were
analyzed.  

2.3 Exclusion criteria
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This analysis excludes studies that used image reconstruction techniques in conventional (high field)
MRI. Articles involving image reconstruction techniques in other imaging modalities, such as computed
tomography, ultrasound imaging, and others, were also eliminated.

3. Results

3.1 Image Reconstruction Approaches in Medical Imaging
Wang et al. [26] suggest in their special issue that the field of medical image reconstruction has
progressed through three stages, which include the following:

i. In the first phase, analytical procedures that used an idealized mathematical model of an imaging
system, such as the inverse Fourier transform in MRI and the filtered back-projection method (FBP) in
computed tomography (CT), were used. These image reconstruction techniques are simple to
implement. However, they simply consider the imaging system's sampling properties, with little (if
any) regard for the properties of the thing being scanned.

ii. Iterative techniques are used to reconstruct images in the second phase. These methods take into
account the statistical and physical characteristics of the imaging system. Most of these methods
rely on statistical object models like Markov random fields or regularization techniques like
roughness penalties. These techniques have been used commercially in major imaging modalities
such as MRI, positron emission tomography, and single-photon emission computed tomography.

iii. The third phase, which has just begun, is the application of data-driven and learning-based image
reconstruction approaches. Dictionary learning and machine learning algorithms are employed in
tomographic image reconstruction. One of the issues with using these approaches in image
reconstruction is a lack of medical imaging data for training and testing due to personal, legal, and
business constraints.

 

The Table 1 below summarizes the current approaches that are used for image reconstruction in medical
imaging. 

Table 1: Summary of the techniques used in Medical Image Reconstruction



Page 7/21

Phase  Techniques
Used

Strength  Limitations 

First
phase

Analytical
methods 

They are efficient  It requires proper sampling.

Second
phase

Iterative
methods 

The imaging device's statistical
and physical features are taken
into account.

Disparities between the model and the
physical environment.

Third
phase

Learning-
based
methods 

Learned signal models can be
used to rebuild images from
low-quality data.

They are inefficient in terms of
computing and necessitate enormous
amounts of training data.

 

3.2 The motivation for use of Low Field MRI
The build-up of cerebrospinal fluid in the cavities of the brain is known as hydrocephalus. If left untreated,
it can be lethal. Every year, around 200,000 new instances of hydrocephalus are diagnosed in Sub-
Saharan Africa [27]. Magnetic resonance imaging (MRI) is the primary approach for diagnosing
hydrocephalus [28]. Many children with hydrocephalus in East Africa and other developing countries now
lack access to conventional (high-field) MRI scanners, which are the recommended imaging technique for
disease administration and treatment. Traditional MRI scanners are costly to purchase and maintain,
which limits their use in low-income nations. In developing nations, low-field MRI equipment can provide
an economical [29], long-term, and safe imaging alternative to high-field MRI [30] and computed
tomography (CT) for hydrocephalus brain imaging [8].  Low field MRI has also long been regarded to be a
technique to give patients with claustrophobia open access [31]. Mbarara University of Science and
Technology (MUST) in Uganda is working on a low-field MRI system for hydrocephalus diagnosis with
Leiden University Medical Center (LUMC) in the Netherlands, Pennsylvania State University (PSU) in the
United States, and the Delft University of Technology (TU Delft) in the Netherlands (Figure 1 shows the
low field MRI systems under development). Due to their low cost, portability, and compatibility with
patients who have metallic implants, low-field portable MRI scanners, as opposed to conventional MRI
scanners based on superconducting magnets, may provide a supplementary medical imaging solution in
a moving environment (e.g., the ambulance, the field hospital), rural areas, or developing countries [11].
For details of the low-field MRI under development,   refer to [28], [8], [32], [33]. More so, low field MRI have
been used in the diagnosis of other diseases like cerebral malaria [34], imaging of knee injuries [35],
diagnosing lesions of the rotator cuff, low field cardiac MRI [36], probing rock pore space using low field
nuclear magnetic resonance technologies [37], musculoskeletal conditions [38], tibial component
migration [39], low‑field dental MRI [40], glioma surgery [41] and glenoid labrum (Shoulder pathology)
[42].

3.3 The need for image reconstruction in low field MRI
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The strength and uniformity of the magnetic field ensure the quality of the images produced by typical
MRI scanners. MRI scanners, on the other hand, are large and expensive since superconducting magnets
are required to generate such a field, rendering them inaccessible to a large number of people in
underdeveloped countries. The low-cost, portable, and low-field MRI scanners in development do not
employ superconducting magnets. The signal-to-noise ratio in these scanners is much poorer due to the
reduced magnetic field strength [43]. There are also inhomogeneities, meaning that the usual way of
getting the image, based on the inverse Fourier Transform, is no longer practicable [44] [45]. low-field MRI
scanners yield noisy images that require enhancement before being used by clinicians in their diagnosis
tasks [10] [14] [46] [47] [48] [49] [50]. Figure 2 shows some of the images from our low-field MRI
prototypes. As a result, image reconstruction approaches suited for improving image quality in low field
MRI are required.

3.4 Approaches for Medical Image Reconstruction in MRI

3.4.1 Medical Image Reconstruction using Fourier
Transform Techniques
Several traditional approaches are utilized in MRI image reconstruction. Among these methods include
the use of discrete Fourier transforms (DFT), Radon transforms, and parametric procedures. To obtain the
required images, the DFT method employs Fourier series on linearly or radially sampled k-space data, the
Radon transform employs projection on k-space data, and the parametric technique, also known as a
non-Fourier series, employs implicit or explicit data extrapolation to recover some of the unmeasured
high-spatial-frequency data [21].  The DFT technique is employed in MR image reconstruction because of
the discrete samples included in k-space. A mathematical series with the same number of terms as data
samples is defined as the discrete Fourier transform and its inverse. The terms in the series are combined
together to calculate one pixel of an MR image. The fast Fourier transform (FFT) is an efficient method
for computing a DFT. The inverse discrete Fourier transform (IDFT) approach is used in MRI and is
implemented as an inverse Fourier transform (IFT) from uniformly sampled k-space data. The
mathematical concept of DFT is well explained in the study by Aibinu et al. [21]. 2D-DFT and inverse 2D-
DFT are represented by the equations (2) and (3), respectively. The 2D Fourier transform is produced by
doing a Fourier transform on one dimension of the data, then a Fourier transform on the other, while the
2D inverse Fourier transform is acquired by performing simply the inverse Fourier transform on both
dimensions of the data. 
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The implementation of inverse Fourier transform (IFT) in MRI image reconstruction is done in two steps
(i) the one-dimensional inverse Fourier transform (1D-IFT) of the row data is computed (ii) followed by the
1D-IFT of the column data. When a 1D-IFT of the k-space column data is computed first, followed by a
1D-IFT of the k-space row data, the same result is produced. Because of the DFT's linear and separability
features, the above operation is conceivable. This method of image MRI reconstruction is simple to use,
however it has drawbacks such as Gibb's effect at edges, artifacts, and a loss of spatial resolution [21]. 

3.4.2 Medical Image Reconstruction using Data-Driven
Methods
Machine learning, in particular Deep learning, computer vision, and image analysis, work with existing
images to produce features, whereas tomographic image reconstruction uses measurement data to
produce images of internal structures, which are various features of the underlying images. Machine
learning, particularly Deep Learning, is an emerging approach for image reconstruction, as evidenced by
the literature, and academics are actively developing Deep Learning-based image reconstruction
approaches for a variety of imaging modalities [26]. Also, during medical image reconstruction, adaptive
dictionary learning, a particular technique within machine learning, employs learnt iterative techniques. As
a result, both Deep Learning and adaptive dictionary learning fall under the category of data-driven image
reconstruction approaches, which are the current state-of-the-art in medical image reconstruction. The
following parts (a and b) address the dictionary learning and Deep Learning approaches to image
reconstruction, respectively. 

(a) Dictionary Learning Approach for Medical Image Reconstruction
Dictionary learning (DL) is a representation learning method that aims to find a sparse representation of
input data (also known as sparse coding) in the form of a linear combination of basic components [52].
Represent learning is a collection of machine learning techniques that allow a system to automatically
identify the representations required for feature identification or classification from raw data. The most
typical application of dictionary learning is in compressed sensing. Compressed sensing is a signal
processing approach for acquiring and reconstructing a signal that works by finding solutions to
underdetermined linear equations. Compressed sensing allows a high-dimensional signal to be
reconstructed with only a few linear measurements if the signal is sparse or nearly sparse. The basic
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issue is that not all signals match this condition for sparsity. To discover the sparse representation of the
signal, some methods can be utilized, such as the wavelet transform or the directional gradient of a
rasterized matrix. Various signal recovery techniques, such as basis pursuit, compressive sampling
matching pursuit (CoSaMP), and quick non-iterative algorithms, can be used once the signal's matrix or
high-dimensional vector has been transferred to a sparse space [52]. The assumption behind dictionary
learning is that the dictionary must be inferred from the incoming data. With DL, input signals can be
represented with the fewest number of components possible. Dictionary learning is used in signal
processing and machine learning to find a frame called a dictionary in which the training data allows for
a sparse presentation. There are two current dictionaries design trends: (i) Analytic dictionaries, such as
curvelets, contourlets, and bandelets, rely on a mathematical model of the data to construct a dictionary
and are characterized by efficient mechanisms for computing transform coefficients as well as robust
theoretical guarantees for signal approximation. (ii) Data-Driven Adaptive Dictionaries, which derive an
ideal representation from signal observed instances. Because no single dictionary is perfect for all types
of signals, adaptive dictionaries are more powerful, but at the cost of increased processing complexity
and diminished theoretical assurances [53]. Dictionary learning has been utilized in image processing
applications including as image reconstruction, denoising, super-resolution, and segmentation [53]. 

(b) Deep Learning Technique for Medical Image Reconstruction
After a deep learning-based technique triumphed a computer vision competition in 2012, deep learning
(DL) gained prominence [54]. More crucially, deep-learning algorithms have improved their performance
since 2010, with DL surpassing human accuracy in large-scale visual identification tests by 2015 [55]. DL
varies from traditional machine learning techniques in that it learns picture data without the requirement
for feature extraction, whereas previous methods required human involvement [54][56]. DL techniques are
based on artificial neural networks (ANNs) [56]. As stated in the introduction, the purpose of this paper is
to offer an overview of current approaches for image reconstruction in low field MRI. A more general
summary of Deep Learning can be found in the studies [54][55][56][25][57][58][59]. There is a tiny corpus
of literature on deep-learning applications in medical image reconstruction. According to the researchers,
machine learning has been successfully used to image processing tasks such as segmentation,
classification, edge detection, and super-resolution, and they believe it can also be useful for medical
image reconstruction. Research on the use of Deep Learning in medical imaging may be found in [60][61]
[62][63][64][65][66][67]. 

Deep learning techniques, particularly convolutional neural networks (CNN), have been used in medical
imaging modalities such as Magnetic Resonance Imaging. The frequency domain, commonly known as
k-space, is utilized to reconstruct images in MRI. All of the information needed to reconstruct an image is
contained in K-space data, as well as a thorough understanding and classification of the reconstruction
method and imaging properties [21]. The k-center, space's group low-frequency signals, and these low-
frequency signals comprise contrast information. High-frequency signals are spaced outside the center of
the k-space data, and these high-frequency signals communicate spatial resolution or sharpness
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information. The field of image reconstruction is undergoing a paradigm shift right now. Transform-
based or optimization-based techniques have typically dominated image reconstruction. Data-driven
machine learning approaches, notably Deep learning, have recently been demonstrated to have a
considerable advantage over earlier methods for image reconstruction in recent study. Several deep
learning frameworks have been described, including AUTOMAP [68], and experimental results have
indicated that traditional and compressed sensing-based reconstruction techniques provide higher-quality
image reconstructions. The problem of large volumes of training data has been overcome by restricting
the number of trainable parameters [69], [70]. However, a number of disadvantages have been identified,
including the computational cost of existing techniques [68], the fact that some frameworks do not apply
to parallel imaging [71], and the need for theoretical analysis to explain why the algorithms work [69]. 

3.5 Image Reconstruction Approaches in Low field MRI
In developing countries, low-field MRI equipment can provide an economical, long-term, and safe imaging
option to high-field MRI and computed tomography (CT) for brain imaging [8]. Hömmen et al. [10] also
discovered that existing extreme low-field MRI systems can generate the needed signal-to-noise ratio
(SNR) for clinical imaging. According to Huang et al. [11], portable low-cost MRI equipment can provide a
point of care and fast MRI diagnosis, especially in low-income countries where 0.1 MRI scans per
1,000,000 persons are common [12] [13]. Several studies [8], [14] have found that low-field MRI scanners
have a low signal-to-noise ratio (SNR), resulting in noisy images. Hömmen et al. [10], who discovered that
image artifacts have an impact on reconstruction quality, backed up this claim. It is vital to conduct a
systematic evaluation of the image reconstruction approaches utilized in low-field MRI in light of recent
breakthroughs and numerous influential publications in the field. This section aims to familiarize readers
with relevant knowledge, literature, and the most recent updates on state-of-the-art image reconstruction
techniques that have been employed in low field MRI, as indicated in Table 2 below, with their objectives,
outcomes, and areas for improvement.

Table 2: Overview of image reconstruction techniques in low-field MRI, and areas for improvement
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Reference  Objective   Results  Area(s) of improvement

[14] Established a
universal MRI signal
model that describes
the link between
measured signal and
image that is more
suited to low-field
MRI

Experimental results revealed that
the proposed algorithm produced
better results and therefore
preferred.

Though less evident, the
suggested technique
produces aliasing
artifacts in the lower half
of the image.

[44] This study focuses
on super-resolution,
which is the process
of reconstructing a
high-resolution
image from one or
more low-resolution
images.

Due to the greater signal-to-noise
ratio per pixel, simulations
demonstrate that super-resolution
reconstruction can produce better
results than direct high-resolution
reconstruction in an extremely
noisy scenario.

Blurring was not taken
into consideration.

[45] To develop a method
for reconstructing
images using direct
linear inversion (DLI).

The results show that the
approaches' reconstruction errors
are influenced by the strength of
the contemporaneous gradients.

To completely remove
the distortions, more
study is required.

[46] An adaptive-size
dictionary learning
algorithm is a
proposed algorithm
that combines
information-theoretic
criteria and
Dictionary learning
techniques.

When compared to existing state-
of-the-art methods, the suggested
approach consistently
outperforms them in terms of
PSNR, SNR, and HFEN.

integrating the proposed
algorithm with an image
denoising function may
help to eliminate noise
from noisy images
produced by Low-Field
MRI equipment. 

[47] Proposed an
algorithm for image
reconstruction and
denoising using a
two-level Bregman
iterative technique
with OMP for sparse
coding and SimCO
for Dictionary Update
and Learning.

The results show that our
suggested approach produces
improved, practically noise-free
image reconstructions.

The proposed algorithm
over smoothens the
image edges.

[48] Present an algorithm
for image
reconstruction in low-
field MRI using
ASDLMRI for image
reconstruction and a
nonlinear diffusion
filter for image
denoising.

The suggested approach is
effective in denoising images
during reconstruction, according
to experiments on visual quality.

A segmentation function
needs to be added to
the proposed algorithm
in the future study.

[50] implement, test, and
evaluate popular
denoising algorithms

All of the algorithms removed
more than half of the noise in the
images, according to the results.

Trilateral filters must be
implemented, with the
smoothing process
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(Median, Gaussian,
Wiener, Anisotropic-
diffusion, and
Bilateral filters) for
low-field MR image
denoising

However, at some point, the
smoothing process tends to
combine the unrelated regions.

taking into account
geometric, photometric,
and local structural
orientation similarities
between surrounding
pixels in inhomogeneous
regions.

[72] Proposed a
multiplicative
regularization
approach for image
reconstruction in low
field MRI.

Experimental results revealed that
the proposed approach can be
used for both image
reconstruction and denoising
tasks.

Need for edge
preservation especially
with low SNR signals

[73] To reconstruct
images based on the
back projection
imaging method
utilizing the
maximum likelihood
expectation
maximization
(MLEM) algorithm

The imaging resolution

reached 1.8 ×1.8mm2.

More work is needed to
improve imaging
resolution in a
reasonable amount of
time.

[74] Proposed an end-to-
end deep neural
network
methodology
(AUTOMAP) for
improving the image
quality of noise-
corrupted low-field
MRI data.

AUTOMAP enhances image
reconstruction of data obtained
on two low-field MRI systems:
human brain data and plant root
data, displaying SNR increases
over Fourier reconstruction.

The fully connected layer
requires a lot of memory,
which is a key
disadvantage of
AUTOMAP [26].

[75] To investigate how
much to improve the
reconstruction of
images from a low-
cost MRI-scanner
prototype

The quality of the results is
insufficient for diagnosing, say,
hydrocephalus. However, The
reconstructions improved
dramatically as a result of the
simulated expansion.

More experiments are
needed using measured
data to determine the
feasibility of the
algorithm.

[76] To correct for image
distortions produced
by standard Fourier
reconstruction
techniques on low
field permanent
magnet MRI systems

Iterative conjugate phase
reconstruction (CPR) produces
images that are comparable in
quality to iterative model-based
(MB) reconstructions. Iterative MB
reconstruction, on the other hand,
outperforms iterative CPR in
terms of signal intensity
correction for stronger
inhomogeneities.

In each iteration of the
proposed approach, the
two most expensive
tasks are updating the
Split Bregman (SB)
system matrix and
reconstructing the two
images. Parallelization
can greatly speed up
these processes.

[77] To solve the major
constraints in image
reconstruction for
low-field MRI using a
deep learning (DL)
approach.

With synthetic data, DL produces
high-quality images.

Neural networks can find
a signal-to-image
mapping, implying that
this concept can be
applied to real-world
data, and therefore
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requires further
investigation.

 

4. Conclusions And Recommendations
In developing countries, low-field MRI devices can provide an economical, long-term, and safe imaging
alternative to high-field MRI for hydrocephalus brain imaging. The signal-to-noise ratio in these scanners
is much poorer due to the lower magnetic field strength. Inhomogeneities are also present, meaning that
the inverse Fourier Transform method of collecting the image is no longer possible. There is little study in
the literature on applying image reconstruction techniques to improve the quality of images from low-field
MRI scanners. These techniques include iterative methods like [14], dictionary learning methods like the
approaches proposed in [46], [47], [48], and deep learning methods like AUTOMAP [74]. Experimental
results from the literature revealed improved image quality of the reconstructed images. However, some
studies used synthetic data in their experiments [75], [77], and therefore more experiments are using
measured/real-world data. Studies using deep learning approaches in low field MRI were very limited,
during this study, we managed to identify and retrieve only two articles [74], [77]. However, deep learning
approaches have been used for image reconstruction in high field MRI [78]. This implies that further
research needs to be done on the possible applications of deep learning approaches for image
reconstruction in low field MRI since deep learning has succeeded in other tasks like image classification
[79]. Also, integrating deep learning and dictionary learning approaches may be of interest to future
researchers.

Abbreviations
MRI: magnetic resonance imaging; SNR: signal-to-noise-ratio; CNR:  contrast-to-noise ratio; ML: machine
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Figures

Figure 1
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The low-field MRI prototypes. The left is the PSU-MUST prototype, adapted from [8]; and the right is the
LUMC prototype, adapted from [32].

Figure 2

Images showing relatively high SNR but also image distortions obtained from the low field MRI scanners
under development. Images were acquired with different weighting at a spatial resolution of 4 × 4 × 4
mm: T1-weighted (2.5-minute data-acquisition time) (A); T2-weighted (2 minutes) (B); inversion-recovery
turbo spin-echo sequence (2 minutes) (C); and higher resolution image (2 × 2 × 4 mm) from a different
volunteer (13 minutes) (D). Adapted from [51].


