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Abstract

Background

Pediatric hospital mortality from infectious diseases in resource constrained countries

remains unacceptably high. Improved methods of risk-stratification can assist in referral

decision making and resource allocation. The purpose of this study was to create prediction

models for in-hospital mortality among children admitted with suspected infectious

diseases.

Methods

This two-site prospective observational study enrolled children between 6 months and 5

years admitted with a proven or suspected infection. Baseline clinical and laboratory vari-

ables were collected on enrolled children. The primary outcome was death during admis-

sion. Stepwise logistic regression minimizing Akaike’s information criterion was used to

identify the most promising multivariate models. The final model was chosen based on

parsimony.

Results

1307 children were enrolled consecutively, and 65 (5%) of whom died during their admis-

sion. Malaria, pneumonia and gastroenteritis were diagnosed in 50%, 31% and 8% of chil-

dren, respectively. The primary model included an abnormal Blantyre coma scale, HIV and

weight-for-age z-score. This model had an area under the curve (AUC) of 0.85 (95% CI,

0.80–0.89) with a sensitivity and specificity of 83% and 76%, respectively. The positive and

negative predictive values were 15% and 99%, respectively. Two alternate models with
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similar performance characteristics were developed withholding HIV and weight-for-age z-

score, for use when these variables are not available.

Conclusions

Risk stratification of children admitted with infectious diseases can be calculated based on

several easily measured variables. Risk stratification at admission can be used for alloca-

tion of scarce human and physical resources and to guide referral among children admitted

to lower level health facilities.

Introduction
The fourth United Nations Millennium Development Goal (MDG4) aims to reduce global
under five mortality by two thirds from the levels seen in 1990 before the end of 2015.[1]
Despite substantial worldwide progress and significant gains in some regions, this achievement
will not be reached in most countries of sub Saharan Africa.[2] Currently, over six million chil-
dren under five years of age continue to die annually, most from infectious diseases.[3,4]

Severe infections including pneumonia, malaria and diarrhea remain the most common
cause of death in children worldwide. Pneumonia alone kills more than 1.2 million children
annually in resource constrained countries.[4,5] To help address this burden, the World Health
Organization introduced the Integrated Management of Childhood Illness (IMCI) guidelines
offering hospitals and health centers a syndrome based approach to identify the major causes
of death in children under five.[6] Whereas the IMCI guidelines provide an approach to the
identification and management of common pediatric diseases, they do not provide any risk
scores for the identification of children at high risk of mortality. While the IMCI guidelines do
provide a list of danger signs for each condition, facilitating an approach for referral decisions,
these were not developed for risk scoring per se.

Several risk scoring models have been developed for use in developed countries to determine
in-hospital mortality in pediatric patients. The Pediatric Risk of Mortality (PRISM), Pediatric
Index of Mortality (PIM) and (PIM2), are models that predict mortality in children admitted
to a pediatric intensive care units.[7–9] These models calculate risk based on several physio-
logic characteristics and can help identify children requiring more focused care. In resource
constrained countries efficient resource utilization is especially important and models that can
effectively predict risk could be used to facilitate such prudent resource utilization. This may be
especially important for children admitted to lower-level health facilities where the capacity to
treat critically ill children is absent or limited. In this context, risk scores could play a crucial
role in guiding referral to higher level health centers and hospitals which may be better
equipped to care for these children. Models such as PRISM and PIM were derived in developed
countries and do not take into consideration major differences seen in children from resource
constrained countries, in particular the high prevalence of HIV and malnutrition. Health sys-
tem limitations for diagnosis, treatment and referral, and social factors such as the prevalence
of poor health seeking behavior are also substantially different. Further, the criteria used in the
application of these models (base excess, FiO2, time to ventilation etc.) are often not available
or relevant in a resource constrained context where mechanical ventilation and modern critical
care techniques are the exception. New models developed in and for a resource constrained
environment are urgently needed. Where these models have been evaluated in resource con-
strained countries, it has been done in environments atypical to what is generally available in
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this context. Recently, a risk scoring algorithm for prediction of in-hospital mortality in sub-
jects with respiratory disease has been developed for use in more a typical East African resource
constrained context.[10] However, this scoring tool is limited to those admitted with respira-
tory disease and would need to be combined with other predictive tools to be used to evaluate
risk in any child with a suspected infectious illness.

The objective of this research is to develop a prediction model of in-hospital death among
children admitted with proven or suspected infectious diseases of any etiology.

Materials and Methods

Population
This two-site study was conducted at the Mbarara Regional Referral Hospital (MRRH) and the
Holy Innocents Children’s Hospital (HICH), both in Mbarara, Uganda. MRRH is a public hos-
pital funded by the Uganda Ministry of Health and is associated with the Mbarara University
of Science and Technology Faculty of Medicine. The pediatrics “Toto” ward admits approxi-
mately 5000 patients per year. HICH is a Catholic children’s hospital offering subsidized fee-
for-service outpatient and in-patient care in Mbarara and admits approximately 2500 patients
annually.

This was a prospective observational study conducted between March 2012 and December
2013 was approved by the institutional review boards at the University of British Columbia
(Vancouver, Canada) and the Mbarara University of Science and Technology (Mbarara,
Uganda).

Eligibility
Children aged 6–60 months who were admitted for treatment of a proven or suspected infec-
tious illness were eligible for enrollment. Subjects previously enrolled were excluded (i.e.
patients could not be re-enrolled during a subsequent admission). Enrollment was continuous
and all children meeting inclusion criteria who were admitted during study working hours or
within 8 hours of a study shift were considered eligible. Parents or the legal guardians of eligible
children were required to provide written informed consent prior to enrollment.

Study Procedures
Study enrollment occurred at the time of patient admission. Following enrollment, a research
nurse obtained and recorded clinical signs including a 1 minute respiratory rate, blood pressure
(automated), axillary temperature, Blantyre coma scale, and using a Phone Oximeter[11], 1
min photoplethysmogram (PPG), blood oxygen saturation (SpO2) and heart rate. Anthropo-
metric data including height, weight, mid-upper arm circumference (MUAC) was also mea-
sured and recorded. Anthropometric data collected at enrollment were converted to weight for
age, weight for height and height for age z-scores according to the World Health Organization
Child Growth Standards.[12] The age corrected heart rate and respiratory rate z-scores were
obtained by standardizing the raw measurements using the median and standard deviation val-
ues provided by Fleming et al.[13] The age corrected z-scores for systolic blood pressure were
calculated using subjects’ height, according to the procedures previously described.[14] To
incorporate the clinical belief that both excessively high or low temperature reflect deteriorated
health conditions, a transformed temperature was used, which was calculated as 17×log10(37.5-
temperature) when temperature was less than 37 and as 1.95� temperature -71.3 otherwise. A
physiological transformation based on the shape of the relationship between oxygen saturation
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and virtual shunt [70×log10(104-SpO2)-57] was used.[15] This virtual shunt was used as an
index of disease severity.

A blood sample was taken for measurement of hemoglobin, HIV and a malaria blood smear
(microscopy). HIV status was determined using rapid diagnostic test serial algorithm. All posi-
tive tests were confirmed by a separate test. Children under 12 months of age with a positive
test were confirmed using PCR. Hemoglobin was measured on a Beckman Coulter Ac.T 5diff
Cap Pierce Hematology analyzer.

An interview was conducted with the subject’s parent/guardian and information about pre-
vious admissions, distance from health facility, transportation costs, bed-net use, maternal edu-
cation, maternal age, maternal HIV status, history of sibling deaths and drinking water safety
were elicited. Subjects received routine care during their hospital stay and were discharged at
the discretion of the treating medical team. The discharge status of all enrolled subjects was
recorded as death, referral, discharged alive, and discharged against medical advice. The diag-
noses made by the medical team were also recorded.

Outcomes
The primary outcome was mortality during the course of hospitalization.

Sample Size
For the derivation of prediction models, standard calculations of sample size do not apply since
these calculations do not account for the model selection process (i.e., the optimization to
achieve specified sensitivity and specificity cut-offs). One hundred events, corresponding to a
total sample of approximately 1000 live-discharges (assuming a mortality rate of 10%, esti-
mated using historical ward data), would be needed to obtain 80% power for ensuring that the
lower 95% confidence limit on sensitivity will be at least 75%. An interim analysis of the study
showed a mortality rate of approximately 5%. Funding was sufficient to increase enrollment to
1307 subjects.

Statistical Analysis
All variables were assessed using univariate logistic regression to determine their level of associ-
ation with the primary outcome. Continuous variables were preferentially analyzed as continu-
ous rather than categorical and were assessed for model fit using the Hosmer-Lemeshow test.
[16] Missing data were imputed using the multiple imputation by chained equations method.
[17] Following univariate analysis all variables were included in a multivariable logistic model
and the primary model was developed using a stepwise selection process. Variables were
removed or added individually based on using Aikaike’s Information Criterion (AIC). AIC was
used as a summary measure to compare the overall predictive value across the models. This
method is considered asymptotically equivalent to cross-validation and bootstrapping.[18,19]
All models which having an AIC value within 10% of the lowest value were considered as rea-
sonable candidates. The final selection of a model was judged on model parsimony (the simpler
the better), availability of the predictors (with respect to minimal resources and cost), and the
attained sensitivity (with at least 50% specificity). These criteria were determined a priori. The
area under the curve (AUC) was reported for each model and represents the overall discrimi-
natory ability of the model. All analyses were conducted using R (Vienna, Austria; http://www.
R-project.org).
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Results
During the study period, 1824 children met the age criteria (six months to five years) and were
screened for eligibility. Of these, 517 (28%) were excluded as they were not admitted with a sus-
pected or proven infectious illness. The most common reasons for exclusion included: malnu-
trition without concurrent infection (n = 192, 37%), already enrolled (n = 51, 10%) living
outside of catchment area (n = 35, 7%) and refusal of consent (n = 22, 4%), (Fig 1). In total,
1307 children were enrolled. The median age at admission was 18.2 months (IQR 11.9–33.1)
and 717 (54.8%) of subjects were male (Table 1). The proportion of children severely under-
weight (weight for age z-score less than -3) was 15.7% and 66 (5.1%) of children were HIV pos-
itive. The most common clinician assigned diagnoses included clinical malaria (49.7%)
pneumonia (31.4%) and gastroenteritis/diarrhea (7.8%).

Fig 1. Consort diagram of study flow.

doi:10.1371/journal.pone.0150683.g001
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Mortality
During the course of admission, 65 (5.0%) subjects died in the hospital and 1242 (95%) were
discharged alive. The median time to death was 2 days from admission (IQR 1–5). Among
those discharged, 120 (9.7%) were discharged against medical advice. Twenty four variables
were tested for their univariate association with mortality (Table 2). Blantyre Coma Scale,
dichotomized as normal (score of 5) and abnormal (score of< 5), was highly associated with
mortality and provided the highest area under the receiver operating characteristic curve, 0.73
(95% CI 0.67–0.79) and an abnormal score being associated with an odds ratio of 11.1 (95% CI
6.59–18.7). All anthropometric variables were associated with mortality during hospitalization.
Low weight for age z-scores (underweight) and weight for height/length z-scores (wasting) pro-
vided the best discriminatory power for in hospital death with AUC’s of 0.64 (95% CI 0.56–
0.71) and 0.63 (95% CI 0.55–0.70), respectively. Both systolic and diastolic blood pressure were

Table 1. Characteristics of Subjects (n = 1307).

General characteristics Frequency, n (%)

Age 6m–12m 393 (30.1)

Age 12m–24m 402 (30.8)

Age 24m–36m 210 (16.1)

Age 36m–48m 159 (12.2)

Age 48m–60m 142 (10.9)

Female sex 590 (45.1)

Length of stay (days), median (IQR) 3 (2–5)

Discharge AMA 120 (9.7)

Duration of illness < 7 days 841 (64.3)

Final diagnoses

Pneumonia 410 (31.4)

Clinical malaria 659 (50.4)

Parasitemia 434 (33.5)

Gastroenteritis 102 (7.8)

Meningitis 39 (3.0)

Comorbidities

HIV 66 (5.0)

Tuberculosis 23 (1.8)

Anthropometrics

Underweight (WAZ <-2) 372 (28.6)

Severe underweight (WAZ <-3) 206 (15.9)

Wasting (WHZ <-2) 454 (35.3)

Severe Wasting (WHZ <-3) 237 (18.4)

Stunting (HAZ < -2) 368 (28.5)

Severe Stunting (HAZ < -3) 185 (14.3)

MUAC < 125mm 187 (14.5)

MUAC < 115mm 94 (7.3)

Distance from hospital

< 30 minutes 339 (25.9)

30 minutes– 1 hour 290 (22.2)

> 1 hour 678 (51.9)

MUAC: Mid-Upper Arm Circumference

doi:10.1371/journal.pone.0150683.t001
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associated with mortality, with raw diastolic pressure providing the highest AUC, 0.65 (95% CI
0.58–0.73). Other clinical variables including oxygen saturation, HIV diagnosis, and tempera-
ture were also associated with mortality but had lower areas under the ROC curve. Several vari-
ables including heart rate, respiratory rate, systolic blood pressure, hemoglobin concentration,
and parasitemia were not associated with mortality.

Multivariate Prediction Model
Three models were developed for prediction of mortality. A primary model was developed
using any of the available variables. Subsequent models were derived which selectively excluded
certain variables from the primary model to ensure that prediction could be possible in the
absence of certain variables which may not be available at all centers.

The first model included weight for age z-score, Blantyre coma scale and HIV status. The
model equation was: logit [Pr (In-patient mortality)] −1.78+(−0.26; weight for age z-score)
−2.50 (normal Blantyre coma scale) +1.32 (positive HIV diagnosis) and the area under the
receiver operator characteristic curve was 0.85 (95% CI 0.80–0.89). At a probability cut-off of
0.030, this model had a sensitivity of 0.83 (95% CI 0.74–0.92) and a specificity of 0.76 (95% CI
0.73–0.78). We would expect the positive predictive value to be 0.15 (95% CI 0.11–0.19) and
the negative predictive value to be 0.99 (95% CI 0.98–1.00) (Tables 3 and 4, Fig 2).

Table 2. Univariate analyses of candidate predictor variables for inpatient-mortality.

Variable n (%) OR (95% CI) p-value AUC ROC (95% CI)

Age (months) 1306 (99.9) 1.00 (0.99–1.02) 0.85 0.51 (0.44–0.58)

Sex (female) 1307 (100) 0.96 (0.58–1.58) 0.87 0.51 (0.44–0.57)

MUAC 1293 (98.9) 0.98 (0.96–0.99) <0.001 0.60 (0.53–0.68)

Weight 1300 (99.5) 0.89 (0.81–0.97) 0.008 0.59 (0.52–0.67)

Weight-age z-score 1299 (99.4) 0.75 (0.65–0.87) <0.001 0.64 (0.56–0.71)

Weight-length z-score 1282 (98.1) 0.80 (0.72–0.89) <0.001 0.63 (0.55–0.70)

Height-age z-score 1286 (98.4) 0.90 (0.80–1.00) 0.05 0.57 (0.50–0.64)

BMI-age z-score 1282 (98.1) 0.81 (0.71–0.92) <0.001 0.62 (0.54–0.69)

Heart rate 1306 (99.9) 0.99 (0.98–1.00) 0.04 0.55 (0.47–0.63)

Heart rate z-score 1305 (99.8) 0.87 (0.76–1.00) 0.05 0.53 (0.45–0.62)

Resp. rate 1306 (99.9) 1.01 (1.00–1.03) 0.17 0.56 (0.49–0.64)

Resp. rate age z-score 1305 (99.8) 1.06 (1.00–1.12) 0.06 0.55 (0.48–0.63)

SBP 1298 (99.3) 0.98 (0.96–0.99) 0.01 0.60 (0.53–0.68)

SBP z-score 1277 (97.7) 0.84 (0.70–1.00) 0.04 0.59 (0.51–0.67)

DBP 1298 (99.3) 0.96 (0.94–0.98) <0.001 0.65 (0.58–0.73)

Transformed SpO2 1291 (98.8) 1.03 (1.01–1.05) <0.001 0.59 (0.50–0.68)

Temperature–raw 1307 (100) 0.68 (0.57–0.80) <0.001 0.61 (0.54–0.68)

Temperature–transformed 1307 (100) 1.05 (0.93–1.18) 0.47 0.50 (0.43–0.57)

Blantyre Coma Scale1 1307 (100) 0.09 (0.05–0.15) <0.001 0.73 (0.67–0.79)

Hemoglobin (g/dL) 1299 (99.4) 0.94 (0.87–1.02) 0.16 0.56 (0.48–0.64)

Parasitemia (ref: neg) 1297 (99.2) 0.65 (0.36–1.16) 0.14 0.54 (0.49–0.60)

SR Maternal HIV (ref: neg) 1087 (83.2) 1.91 (0.93–3.95) 0.08 0.55 (0.48–0.61)

HIV status (ref: neg) 1263 (96.6) 5.02 (2.22–11.38) <0.001 0.58 (0.51–0.64)

1. dichotomized in to normal vs abnormal as too few with score less than 4

SBP: Systolic Blood Pressure, DBP: Diastolic Blood Pressure, SR: Self Report

doi:10.1371/journal.pone.0150683.t002
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Model 2 replaced weight for age z-score in model 1 with mid-upper arm circumference, a
variable that is more easily obtainable, especially in poorly resourced areas. The area under the
ROC curve was 0.84 (95% CI 0.79–0.89). At a probability cut-off of 0.030 this model had a sen-
sitivity of 0.80 (95% CI 0.70–0.90) and specificity of 0.76 (95% CI 0.74–0.79) and we would
expect the positive predictive value and negative predictive value of 0.15 (95% CI 0.11–0.19)
and 0.99 (95% CI 0.98–1.00), respectively, in a population similar to the derivation cohort
(Tables 3 and 4).

Model 3 included MUAC and Blantyre coma scale and excluded HIV. At a probability cut-
off of 0.30 this model had a sensitivity of 0.82 (95% CI 0.72–0.91) and a specificity of 0.71 (95%
CI 0.68–0.73). The expected positive and negative predictive values would be 0.13 (95% CI
0.10–0.16) and 0.99 (0.98–0.99) (Tables 3 and 4).

Discussion
This study represents a systematic approach to creating an in-hospital mortality prediction
tool for the under-five pediatric population admitted with an infectious illness in a resource
constrained environment. The model developed is parsimonious, using only age, weight, Blan-
tyre coma scale and HIV status to determine the probability of in-hospital mortality. Variables
used in the development of the prediction model included only those thought to be both easily
and reliably obtainable in most resource constrained contexts. Alternate models were devel-
oped incorporating different elements to ensure prediction would be possible in situations
where certain variables may not be available.

Table 3. Model Characteristics.

Model AUC (95% CI) Sens. (95% CI) Spec. (95% CI) PPV (95% CI) NPV (95% CI)

1 0.85 (0.80–0.89) 0.83 (0.74–0.92) 0.76 (0.73–0.78) 0.15 (0.11–0.19) 0.99 (0.98–1.00)

2 0.84 (0.79–0.89) 0.80 (0.70–0.90) 0.76 (0.74–0.79) 0.15 (0.11–0.19) 0.99 (0.98–1.00)

3 0.82 (0.72–0.91) 0.82 (0.72–0.91) 0.71 (0.68–0.73) 0.13 (0.10–0.16) 0.99 (0.98–0.99)

PPV: Positive Predictive Value, NPV: Negative Predictive Value

doi:10.1371/journal.pone.0150683.t003

Table 4. Models Developed for Prediction of In-patient Mortality.

Variable Regression Estimate p-value OR (95% CI)

Model 1 –Primary model, Intercept = -4.280

Abnormal BCS 2.51 <0.001 12.30 (7.10–21.30)

Positive HIV diagnosis 1.32 0.007 3.74 (1.46–9.57)

Weight-age z-score -0.25 0.002 0.78 (0.66–0.91)

Model 2 –Model derived without weight for age z-score, Intercept = -0.523

Abnormal BCS 2.54 <0.001 12.68 (7.31–22.01)

Positive HIV diagnosis 2.27 0.006 3.79 (1.48–9.71)

MUAC (mm) -0.03 0.002 0.98 (0.96–0.99)

Model 3 –Model derived without HIV and weight for age z-score, Intercept = 0.303

Abnormal BCS 2.47 <0.001 11.78 (6.90–20.13)

MUAC (mm) -0.03 <0.001 0.97 (0.96–0.99)

BCS: Blantyre Coma Scale, MUAC: Mid-Upper Arm Circumference

doi:10.1371/journal.pone.0150683.t004
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In the context of limited resources, rapid risk determination is of critical importance. The
implementation of an improved triage and training system (ETAT) alongside improvements in
patient flow was shown to decrease in-patient mortality, especially early in-patient mortality.
[20] Prediction models such as the one derived in this study could be used alongside a compre-
hensive strategy such as ETAT to improve care at the point of admission and focus human (eg.
nursing) and clinical (eg. oxygen) resources on those children at highest risk of mortality. The
determination of risk could play a unique role in sub-Saharan Africa where critically ill chil-
dren admitted to lower level health centers require sufficient time to travel to referral hospitals.
Further, as referral decisions are often made by non-physician health care providers, decision
tools such as these could offer substantial aid with minimal training to ensure that those at
high risk of mortality are referred. Using a risk-cut-off of 0.30, the referral population would
have a mortality risk of 15% (95% CI 11% - 19%) compared to a mortality risk of 1% (95% CI
0% - 2%) in those not referred, if similar to the admitted sample in this study. Future research
must, however, examine the effect of transporting critically ill children as identified with these
models as transportation itself may confer its own risks.

Other models developed for mortality prediction in settings without resource constraints
have been evaluated in resource constrained settings have been shown to not perform ade-
quately. A critical difference in the populations in whom models such as PRISM were derived
is the much lower prevalence of moderate and severe malnutrition. In this present study an

Fig 2. Primarymodel receiver operating curve characteristics.

doi:10.1371/journal.pone.0150683.g002
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anthropometric measure played a crucial role in all derived models, providing a majority of the
discriminatory power in final model. Malnutrition as an independent and critical contributor
to infectious disease morbidity and mortality cannot be over emphasized and should be consid-
ered as an important component of the evaluation of any infectious illness. In addition to mal-
nutrition, an abnormal Blantyre coma scale was also of critical importance, proving more
discriminatory than vital signs in predicting mortality.

Although the Integrated Management of Childhood Illness algorithm was not designed as a
prediction tool, it does provide referral criteria, listed as danger signs. A recent study from Tan-
zania evaluated the predictive utility of these criteria for in-hospital mortality. Among 387 chil-
dren aged two months to five years, and an overall mortality rate of 7.4%, one or more IMCI
danger sign had a sensitivity of 72% (95% CI 56% - 88%) for predicting in-hospital death and
would identify 38% of subjects as high-risk.[21] Using a cut-off of 0.30, our model, using fewer
and more reliably obtained variables, has a higher sensitivity of 0.83 (95% CI 0.74–0.92) and
would only identify approximately 25% as high-risk, allowing for a more efficient utilization of
resources.

This study was limited by fewer cases of the primary outcome (in-hospital mortality) than
was initially anticipated. Although designed to derive prediction models using 100 outcomes,
this enrolled only 65 children who died in-hospital. Despite the relatively low number of out-
comes our primary model had an AUC of the receiver operating characteristic curve of 0.85
with the lower limit being 0.80, highlighting the excellent discriminating ability of the final
model and the utility of each of the predictive variables in the model. A further limitation is
that currently it is not known whether the identification of high-risk children can actually
result in saved lives, although it would be difficulty to justify not acting on such information.
Another limitation of this study are the mathematical calculations involved with the use of the
proposed models. To address this important limitation our research group has developed and
evaluated a mobile application of this model and one for post-discharge mortality. Finally, the
lack of external validity limits widespread use and scaling of this model.[22] Wider validation
studies must be conducted prior to the implementation of this model in any setting.

Although a major strength of this study was its development using more than one hospital,
these results require confirmation at other hospitals in other resource constrained countries for
further calibration prior to recommending their uptake. This is of particular importance if
used to aid in referral decision making at lower level health centers, as admission criteria are
certainly different than in larger hospitals producing a unique population of children. These
models could also aid in the development of a standardized in-patient mortality prediction
score could also be helpful in the designing of clinical trials of interventions in resource con-
strained settings.

In conclusion, a parsimonious prediction tool using easily collected predictors can be used
to efficiently predict in-hospital mortality. Further research to externally validate this model is
required prior to widespread implementation.
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