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Abstract

Objective: Dolutegravir (DTG) is now a preferred component of first-line antiretroviral therapy 

(ART). However, prevalence data on natural resistance to integrase inhibitors (INSTIs) in 

circulating non-subtype B HIV-1 in sub-Saharan Africa is scarce. Our objective is to report 

prevalence of pre-treatment integrase polymorphisms associated with resistance to INSTIs in an 

ART-naïve cohort with diverse HIV-1 subtypes.

Design: We retrospectively examined HIV-1 integrase sequences from Uganda.

Methods: Plasma samples were derived from the Uganda AIDS Rural Treatment Outcomes 

(UARTO) cohort, reflecting enrollment from 2002–2010, prior to initiation of ART. HIV-1 

integrase was amplified using nested-PCR and Sanger-sequenced (HXB2 4230–5093). Stanford 

HIVdb v8.8 was used to infer clinically significant INSTI-associated mutations. HLA typing was 

performed for all study participants.
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Results: Plasma samples from 511 ART-naïve individuals (subtype: 48% A1, 39% D) yielded 

HIV-1 integrase genotyping results. Six out of 511 participants (1.2%) had any major INSTI-

associated mutations. Of these, two had E138T (subtype A1), three had E138E/K (subtype D), and 

one had T66T/I (subtype D). No participants had mutations traditionally associated with high 

levels of INSTI resistance. HLA-genotypes A*02:01/05/14, B*44:15, and C*04:07 predicted the 

presence of L74I, a mutation recently observed in association with long-acting INSTI cabotegravir 

virologic failure.

Conclusion: We detected no HIV-1 polymorphisms associated with high levels of DTG 

resistance in Uganda in the pre-DTG era. Our results support widespread implementation of DTG, 

but careful monitoring of patients on INSTI with virologic failure is warranted to determine if 

unique mutations predict failure for non-B subtypes of HIV-1.
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INTRODUCTION

The World Health Organization now recommends dolutegravir (DTG) as a component of 

first-line antiretroviral therapy (ART),[1, 2] partially due to DTG’s high genetic barrier to 

resistance[3, 4] and recent release of a fixed-dose combination of lamivudine, tenofovir 

disoproxil fumarate, and DTG, which is available for a lower cost than efavirenz-containing 

regimens in much of sub-Saharan Africa (SSA). In addition, the new generation INSTI 

cabotegravir (CAB) is being investigated as a component of long-acting therapy[5, 6] and 

pre-exposure prophylaxis.[7–9]

In light of the major role INSTIs are likely to play in the HIV treatment landscape in SSA, it 

is of great public health importance to evaluate the susceptibility of circulating HIV strains 

to newer generation INSTIs. Most clinical studies involving DTG have been conducted in 

the United States and Europe (where HIV-1 subtype B predominates), while fewer studies 

have been conducted in regions where diverse HIV-1 subtypes co-circulate, such as in 

Uganda where subtypes A1 and D predominate. Until recently, programmatic use of INSTIs 

in SSA has been limited to salvage regimens. Thus, population exposure to INSTIs has been 

low, and pre-treatment prevalence of major integrase mutations is expected to be rare, with 

studies from SSA reporting 0 – 2.4% prevalence.[10–12] We identified an ideally suited 

Ugandan cohort with diverse viral subtypes in which we aimed to examine naturally-

occurring polymorphisms in non-subtype-B HIV integrase that have been associated with 

reduced susceptibility to INSTIs.[13]

METHODS

Ethics Statement

The study was approved by ethics committees at Mbarara University of Science and 

Technology (14/01–03), Uganda National Council of Science and Technology (HS 07, HS 

938), Partners Healthcare (2011P000522), University of British Columbia/ Providence 
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Health Care (H11-01642), Weill Cornell Medical College (19-12021173), University of 

California San Francisco (10-03,457), and Frederick National Laboratory for Cancer 

Research (IRB 3314). Participants provided written consent.

Study design and study population

Data were collected from the Uganda AIDS Rural Treatment Outcomes (UARTO) study 

(NCT 01596322), which has been described previously.[14, 15] Eligible participants were 

ART-naïve, age 18 and above, and lived within 60 kilometers of the study site. Individuals 

who self-reported prior ART use were excluded. Participants were enrolled from Kampala 

(pilot study, urban setting, 2002–2004) and from Mbarara (main study, rural setting, 2005–

2015). At study enrollment, pre-ART plasma specimens were obtained for HIV-1 RNA viral 

load and were frozen at −80°C for future testing. Pre-ART HIV integrase sequencing and 

HLA typing were planned for participants enrolled from 2002 – 2010, an era during which 

INSTIs were not part of recommended ART regimens in Uganda. Pre-ART HIV-1 reverse 

transcriptase sequences were also obtained for this group, which have been reported 

previously.[14, 15] The present analysis included participants for whom integrase sequencing 

was completed. HLA-genotyping was performed for all studied individuals.

Laboratory procedures

Total nucleic acid was extracted from 500 μL of plasma using NucliSENS easyMag 

(bioMérieux). Invitrogen SuperScript® III One-Step RT-PCR System with Platinum® Taq 

DNA Polymerase was used for reverse transcription and first-round PCR reactions targeting 

HIV-1 HXB2 coordinates 3597–6004 (forward primer 5’-

AAAACAGGAAARTATGCAA-3’; reverse primer 5’-

AGCTCTTCGTCGCTGTCTCCGCTT-3’). Nested second-round PCR reactions targeted 

HIV-1 HXB2 coordinates 3626–5980 (forward primer 5’- 

TGCCCACACTAATGATGTAA-3’; reverse primer 5’- 

CTTCCTGCCATAGGAGATGCCTA-3’). These primers are optimized to account for HIV-1 

genetic diversity, and we obtained successful HIV-1 integrase genotypes for 87% of 

specimens. Bulk Sanger sequencing was performed on ABI 3730 DNA Sequencer using 

BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems). Chromatograms were 

aligned against reference sequence HXB2 (integrase 4230–5093) by an in-house automated 

alignment and base-calling program RECall.[16] HLA typing was performed using Roche 

454/ Fluidigm HLA Typing Kits.[17] Briefly, locus-specific primers were used to amplify 

polymorphic exons of HLA-A, B and C genes with Fluidigm Access Array (Fluidigm 

Singapore PTE Ltd, Singapore). The Fluidigm PCR amplicons were pooled and were 

sequenced on a 454 FLX Genome Sequencer (454 Life Sciences Corpora- tion, Branford, 

CT). HLA alleles and genotypes were called using the Conexio ATF 454 HLA-typing 

software (Conexio Genomics Inc, Perth, Australia).

Subtyping, drug resistance inference, and statistical analysis

We used the Los Alamos Recombinant Identification Program 3.0 (window size 400 with a 

95% confidence threshold) for subtype inference,[18] with confirmation by REGA 2.0 

(BIOAFRICA).[19] All subtyping calls were re-confirmed by neighbor-joining phylogenetic 

analyses with relevant Los Alamos 2010 HIV-1 subtype references.[20] The Stanford HIVdb 
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algorithm v8.8 was used to infer major and accessory mutations associated with reduced 

INSTI susceptibility.[13] We also evaluated the presence of mutations outside the integrase 

region that have been reported to affect INSTI susceptibility.[21] We used Stata 14.0 and R 

for statistical and phylogenetic analyses. Statistical significance was defined as p<0.05.

RESULTS

Baseline characteristics

We obtained successful HIV-1 integrase genotypes for 511/590 (87%) specimens (GenBank 

accession numbers MH925338 – MH925677; MW341596 – MW341779). We describe the 

demographics of the study population in Table 1. The distribution of HIV-1 subtypes was: 

48% A1, 39% D, 4% C, and 8% belonging to other subtypes. All participants were INSTI-

naïve.

Prevalence of pretreatment INSTI-associated mutations

We identified major INSTI-associated mutations in 6/511 (1.2%) participants (Table 2, left 

panel). These included T66I (n = 1; subtype D), E138K (n = 3; subtype D), and E138T (n = 

2; subtype A1). Accessory INSTI-associated mutations were more common, occurring in 

28.4% of participants (n = 145/511). Mutation prevalence in this cohort was similar to that 

reported in the Stanford HIV Drug Resistance Database (Table 2, right panel).[13] None of 

the study participants had >1 INSTI-associated resistance mutation.

Level of resistance to integrase inhibitors

The Stanford HIVdb algorithm classifies degree of resistance to INSTIs into “susceptible,” 

“potential low-level,” “low-level,” “intermediate” and “high.” Based on this classification 

system, 98.6% of participants had viruses that were fully susceptible to second-generation 

INSTIs DTG and bictegravir (BIC). Potential low-level resistance to DTG and BIC was 

identified in 1.2% and 1.4% of participants, respectively. In addition, we identified low-level 

resistance to DTG in one participant (0.2%). Cabotegravir (CAB)-associated resistance 

mutations were not listed in HIVdb at the time of writing. Polymorphisms associated with 

partial resistance to raltegravir (RAL) and elvitegravir (EVG) were more common and 

included potential low-level resistance to RAL and EVG in 9.8% of participants, low-level 

resistance in 2.0% and 1.8% of participants respectively, and high-level resistance to EVG 

with T66TI in one HIV-1 subtype D-infected participant (0.2%).

Association of L74I with HLA-genotypes

Given recent reports linking integrase L74I to CAB-associated treatment failures in subtype 

A1[5, 6], and the knowledge that certain resistance-associated HIV polymorphisms are 

selected under HLA-associated immune pressures,[22] we explored the relationship between 

HLA-genotype and the accessory mutation L74I, which was observed in 30 individuals in 

our cohort. We began by exploring associations between HLA alleles observed with L74I 

using Fisher’s exact tests, in a subtype-specific manner. In doing so we identified six 

associations with p-values <0.05. In subtype A1, HLA-A*02 (inclusive of A*02:01, 

A*02:05, A*02:14), B*44:15 and C*04:07 (p=0.046, 0.025 and 0.017 respectively), and in 

subtype D, B*14:02:01, B*15 (inclusive of B*15:03, B*15:10, B*15:16) and C*03 

MCCLUSKEY et al. Page 4

AIDS. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(inclusive of C*03:02, C*03:04) were significantly associated with L74I (p=0.046, 0.013, 

0.006 respectively). For each of these six HLA genotypes, we then fit multivariable logistic 

regression models to a dataset restricted to subtypes A1 and D infections only (L74I n=27). 

Each model featured L74I as the outcome of interest and presence/absence of each HLA 

allele as the predictor of interest. We included viral subtype and an interaction term between 

viral subtype and HLA-genotype as covariates. L74I remained significantly associated with 

HLA-A*02 (p=0.028), HLA-B*44:15 (p=0.014) and HLA-C*04:07 (p=0.0074), yielding 

adjusted odds ratios of 2.6, 3.7 and 4.2 respectively; all were linked to subtype A1 in the 

initial subtype-stratified univariable analysis.

DISCUSSION

Polymorphisms associated with resistance to INSTIs in non-subtype B HIV-1 are 

understudied. In this analysis, we report that 98.6%, 98.6%, 88.3% and 88.3% of 511 

participants harbored viruses that were genotypically susceptible to BIC, DTG, EVG and 

RAL, respectively. We observed only a 1.2% population prevalence of major integrase 

mutations (T66I and E138K/T), which is similar to other studies,[10, 12] but a relatively high 

(27.6%) prevalence of accessory integrase mutations and polymorphisms, which are not 

known to reduce INSTI susceptibility when occurring alone.[13] Thus, our results support 

widespread use of INSTIs such as DTG in SSA, but presence of pre-treatment accessory 

mutations calls for longitudinal surveillance for resistance mutations moving forward.

Our study also identified an association between HLA-genotype and L74I in subtype A1 

HIV-1-infections. L74I was not previously identified in a comprehensive HLA-association 

analysis in the present Ugandan cohort that employed a much more conservative statistical 

significance threshold [23], however HLA associations with L74X have previously been 

reported in subtype B (HLA B*39:01[24]) and subtype C (HLA B*15:10[25]). Notably, L74I 

occurred in 6% of this Ugandan cohort with 7%, 0%, and 5% prevalence among those with 

subtypes A1, C, and D, respectively. When occurring alone in vivo, L74I is not associated 

with reduced INSTI susceptibility according to Stanford HIVdb.[13] However, in the ATLAS 

and FLAIR studies,[5, 6, 26–28] which evaluated efficacy of long-acting CAB with rilpivirine, 

HIV-1 subtypes associated with failure in the experimental arm were A/A1 (n=2, ATLAS) 

and A1 (n=3, FLAIR). All five of these individuals were from Russia and harbored the L74I 

polymorphism.[27, 28] Four of these individuals also went on to develop additional resistance 

mutations in integrase, including G140R, Q148R, and N155H.[26, 27] While L74I was not 

found to affect viral suppression in FLAIR and ATLAS,[26] there may be subtype-specific 

interaction that warrants further study. Given that subtype A1 is highly prevalent in East 

Africa[29] and represents approximately 12% of HIV-1 infections worldwide,[30] the co-

occurrence of subtype A1-specific polymorphisms and specific HLA-genotypes that may 

lower the genetic barrier for resistance to INSTIs are of particular public health relevance.

Results should be interpreted in light of the relatively small sample size. However, this 

analysis cohort included both urban (Kampala) and rural (Mbarara) groups, as well as a 

broad distribution of HIV-1 subtypes. Of note, few (4%) participants had HIV-1 subtype C, 

so results may not be generalizable to regions where subtype C predominates. We also 

recognize that study specimens were collected in the pre-INSTI era (2002 – 2015). Samples 
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collected from more recent cohorts after broader introduction of INSTIs may yield different 

prevalence estimates for integrase mutations and polymorphisms. In addition, we have not 

demonstrated experimentally that L74I is within an integrase epitope that is targeted by 

HLA-A*02, B*44:15 or C*04:07 in subtype A1 HIV-1. Finally, study results are also limited 

by use of Sanger sequencing, as opposed to next-generation sequencing that allows for 

reporting of minority variants.

In conclusion, we reported a low prevalence of major INSTI mutations in treatment-naïve 

Ugandans infected with HIV-1 subtypes A1, C and D. Importantly, none of the mutations 

observed would significantly impact the efficacy of DTG, supporting WHO and PEPFAR 

guidelines for widescale implementation of DTG-containing regimens in SSA. However, 

effects of L74I on INSTI-based therapy, its link to HLA-genotypes, and whether it lowers 

the genetic barrier to INSTI require population-level validation.
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Table 1.

Study population for assessment of pre-treatment integrase resistance

n = 511

Female 353 (69)

Age (n=506) 34 (29 – 39)

Study site

 Kampala (urban setting) 58 (11)

 Mbarara (rural setting) 453 (89)

Year of study enrollment

 2002 – 2003 50 (10)

 2004 – 2005 68 (13)

 2006 – 2007 271 (53)

 2008 – 2010 122 (24)

Pretreatment CD4 (n=503) 127 (66 – 195)

Pretreatment log10 viral load (n=502) 5.19 (4.71 – 5.66)

HIV-1 subtype

 A1 247 (48)

 C 21 (4)

 D 200 (39)

 Other 43 (8)

Categorical data are listed as count (%).

Continuous data are listed as median (interquartile range).
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