
Journal of Applied Mathematics and Computing (2022) 68:1335–1350
https://doi.org/10.1007/s12190-021-01572-3

ORIG INAL RESEARCH

Solving the Cauchy problem for the Helmholtz equation
using cubic smoothing splines

Mary Nanfuka1,3 · Fredrik Berntsson2 · John Mango3

Received: 16 March 2021 / Revised: 28 April 2021 / Accepted: 6 June 2021 / Published online: 11 June 2021
© The Author(s) 2021

Abstract
We consider the Cauchy problem for the Helmholtz equation defined in a rectangular
domain. The Cauchy data are prescribed on a part of the boundary and the aim is to
find the solution in the entire domain. The problem occurs in applications related to
acoustics and is illposed in the sense of Hadamard. In our work we consider regular-
izing the problem by introducing a bounded approximation of the second derivative
by using Cubic smoothing splines. We derive a bound for the approximate derivative
and show how to obtain stability estimates for the method. Numerical tests show that
the method works well and can produce accurate results. We also demonstrate that the
method can be extended to more complicated domains.
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Mathematics Subject Classification 35J05 · 65N21 · 65D07

1 Introduction

TheCauchyproblem for theHelmholtz equation arises inmanyareas of applied science
in relation to wave propagation, vibration and electromagnetic wave scattering. The
commonly considered waves being water, sound and electromagnetic waves. It is
often used in the determination of acoustic cavities [5] or the detection of the source
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of acoustical noise [6,23]. Other applications include the description of underwater
waves [10], the determination of the radiation field surrounding a source of radiation
[21], the localization of a tumor in a human brain [13], the identification and location
of vibratory sources [15,16] and the detection of surface vibrations from interior
acoustical pressure [7].

The Cauchy problem for the Helmholtz equation is ill-posed, in the sense of
Hadamard, see [9], and therefore regularization is needed. In the literature, different
regularization methods have been applied to the Cauchy problem for the Helmholtz
equation. In [25] the problem was treated in the frequency domain, and an a priori
bound ‖u(·, a)‖2 was used to stabilize the problem. A similar approach was used in
[14], where the problem was stabilized using Meyer wavelets, which are compactly
supported in the frequency domain, and also in [12]. In [24], the problem was reg-
ularized using a modified Tikhonov method. We also refer to [1–4,19,26], and the
references therein, for more regularization techniques that have been successfully
applied to the problem.

In this paper, we develop a novel regularization method for the Cauchy problem for
the Helmholtz equation. In our previous work [18] we have shown that approximating
a derivative by a bounded approximation based on Cubic smoothing splines has a
stabilizing effect for the inverse heat conduction problem. Here we apply the same
technique to the Helmholtz equation and are able to derive stability estimates. Also,
we implement the method numerically and demonstrate that the method works well.
Finally,we extend themethod to the case of amodifiedHelmholtz equation,�u+αu =
0, where α := α(x, y) > 0 is a function. The modified Helmholtz equation appears
in situations where the problem is solved in more complicated domains .

2 The Helmholtz equation and ill-posedness

We consider the following Cauchy problem for the Helmholtz equation, in the rectan-
gular domain � = [0, 1] × [0, a]: Find u ∈ C2(�) ∩ C1(�̄) such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uxx + uyy + k2u = 0, 0 ≤ x ≤ 1, 0 < y < a,

u(x, 0) = g(x), 0 ≤ x ≤ 1,

uy(x, 0) = η(x), 0 ≤ x ≤ 1,

u(0, y) = u(1, y) = 0 0 ≤ y ≤ a,

(2.1)

where k2 represents the wave number and g(x) and η(x) are the Cauchy data,
available on part of the boundary of the domain.

The solution to (2.1), computed by the method of separation of variables, is

u(x, y) =
∞∑

j=1

sin( jπx)

(

ĝ j cosh
(
ω j y

) + η̂ j

ω j
sinh

(
ω j y

)
)

, (2.2)
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where ω j = ( j2π2 − k2)1/2 is a frequency, and

ĝ j = 2
∫ 1

0
g(x) sin( jπx) dx and η̂ j = 2

∫ 1

0
η(x) sin( jπx) dx,

are the Fourier–Sine coefficients. Note that the frequencies ω j may be either real or
complex.

The series (2.2) is convergent for the case of exact Cauchy data [g, η]. If we instead
have noisy data [gδ, ηδ], such that ‖gδ − g‖2 and ‖ηδ − η‖2 ≤ δ, where δ is a bound
on the error, then there is no guarantee that the solution exists. This is because the
magnification factors, e.g. | cosh(ω j y)| and | sinh(ω j y)/ω j |, for a fixed y > 0, grows
exponentially as j → ∞. Thus a small error in the Fourier coefficients, i.e. ĝ j and
η̂ j , for large values of j , are blown-up and may destroy the solution. This means that
the problem is severely ill-posed, and stabilization is needed [9].

We remark that while the Cauchy problem (2.1) has a unique solution the same is
not necessarily true for the boundary value problem obtained by replacing the Cauchy
data, at y = 0, by Dirichlet data u(x, a) = f (x) and u(x, 0) = g(x). This can easily
be seen by considering the function,

u0(x, y) = sin(πx) sin(πa−1y), (2.3)

which satisfies the Helmholtz equation in the domain �, with the wave number k2 =
π2 + (π/a)2 and zero Dirichlet data. Similar solutions can be constructed for the
case of zero Neumann, or Robin boundary, conditions. For our work we avoid issues
related to non-uniqueness of the solution by only considering small values of the
wave-number, i.e. k2 ≤ π2(1 + 1/a2), see [1].

2.1 Stabilization by discretizing the x-axis

In this section we stabilize the Cauchy problem for the Helmholtz equation by dis-
cretizing the x-variable. We replace the second derivative ∂2x by a matrix D2 in order
to regularize the problem. For this purpose we rewrite (2.1) as an initial-value problem

(
u
uy

)

y
=

(
0 1

−(k2 + ∂2x ) 0

)(
u
uy

)

, 0 ≤ y ≤ a, (2.4)

with initial-boundary data

u(x, 0) = g(x), uy(x, 0) = η(x), for 0 ≤ x ≤ 1, (2.5)

and
u(0, y) = u(1, y) = 0, for 0 ≤ y ≤ a. (2.6)

We discretize (2.4) on a uniform grid 0 = x1 < · · · < xn = 1. For simplicity we
introduce an operator that samples the functions on the grid such that, e.g

g� = (g(x))� = (g(x1), . . . , g(xn))
T .
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By introducing semi-discrete representations of the solution and its derivative, i.e.

U (y) = (u(·, y))� and Uy(y) = (uy(·, y))�,

we obtain the initial value problem,

(
U
Uy

)

y
=

(
0 I

−(k2 I + D2) 0

) (
U
Uy

)

, 0 ≤ y ≤ a, (2.7)

with initial data U (0) = g� and Uy(0) = η�. The solution to (2.7) can formally be
written as

(
U
Uy

)

= eBy
(
g�

η�

)

, where B =
(

0 I
−(k2 I + D2) 0

)

. (2.8)

In [8] it was observed that since for any matrix the ‖D2‖2 is bounded. Thus the
system of ordinary differential equations (2.7) is well-posed and the solution depends
in a stable way on the used data. By controlling the accuracy of the approximation
D2 the degree of stability can be adjusted to be suitable for a problem with a specific
noise level.

3 Regularization by cubic smoothing splines

In this section we demonstrate that the Cauchy Problem for the Helmholtz equation
can be regularized by using a cubic smoothing spline.We show how the approximation
of ∂2x ≈ D2 is achieved using a cubic smoothing spline and also develop and prove
Lemmas on the stability of the resulting regularized solution.

3.1 Differentiation by cubic smoothing splines

We adopt the basic notation about splines and introduce the second derivative matrix
D2

λ, show its properties and derive its bound in the Euclidean norm. We use a uniform
grid, with grid parameter h. We work in an L2 setting and introduce the Sobolev space

W 2[0, 1] = {u : u, u′ abs. cont. on [0, 1] and u′′ ∈ L2[0, 1] }, (3.9)

together with the standard norms and semi-norms as defined in [20].
Let y = (y1, y2, . . . , yn)T be a vector of data values on the grid. The cubic smooth-

ing spline that approximates y on the grid is defined as follows:

Definition 3.1 Let y ∈ R
n be a vector. The cubic smoothing spline sλ[y] is obtained

by solving
min

u∈W 2[0,1]
h‖y − u�‖22 + λ|u|22, (3.10)

where λ > 0 is the regularization parameter and |u|2 denotes the semi-norm.
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It is known that the solution to (3.10) is a natural cubic spline and the corresponding
operator, mapping y ∈ R

n onto sλ[y] ∈ W 2([0, 1]), is linear, see [20,22]. Thus we
can introduce a matrix approximating the second derivative as follows:

Definition 3.2 The matrix D2
λ ∈ R

n×n is defined by

D2
λy = (s′′

λ [y](x))�, for all y ∈ R
n . (3.11)

The following properties of the matrix are useful:

Lemma 3.3 The matrix D2
λ is real and symmetric.

Proof The matrix D2
λ can be represented as D2

λ = EW AT , where the matrix W =
h(hAT A+λB)−1, with (B)i j = (βi , β j )2 is symmetric, (A)i j = β j (xi ), and (E)i j =
β ′′
j (xi ), see [18]. A direct computation shows that

(D2
λ)i, j =

n+1∑

l=1

n+1∑

k=1

β ′′
l (xi )wlkβk(x j ). (3.12)

Since both βk(x) and β ′′
k (x) are even functions, with respect to x = xk , then we have

β ′′
l (xi )βk(x j ) = β ′′

l (x j )βk(xi ). Hence rearranging the indicies shows that (D2
λ)i j =

(D2
λ) j i , and the matrix is symmetric with real entries. 
�

Proposition 3.4 The matrix D2
λ satisfies

‖D2
λ‖ ≤ c3λ

−1/2, (3.13)

where c3 is a constant.

Proof Since the second derivative of a cubic spline u is piecewise linear, with respect
to the grid �, we have h‖(u′′)�‖22 ≤ c21|u′′|20, where c1 is a constant. Then from the
definition of D2

λ we have

‖D2
λy‖22 = ‖(u′′)�‖22 ≤ c21

h
|u′′|20 = c21

h
|u|22, (3.14)

where u(x) = sλ[y](x) is the smoothing cubic spline corresponding to the vector
y ∈ R

n . Let y = y − u� + u�, then we can expand ‖y‖22 as

‖y‖22 = (y−u�+u�)T (y−u�+u�) = ‖y−u�‖22+2(y−u�)T u�+‖u�‖22. (3.15)

A consequence of the fact that u(x) solves the least squares problem (3.10), is that
h(y − u�)T u� = λ|u|22, see [18, Lemma 3.7]. Inserting into (3.15), we obtain the
estimate

|u|22 ≤ h

2λ
‖y‖22. (3.16)

By using (3.16) in (3.14) we obtain the desired bound. 
�
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3.2 Stability analysis

In this section we establish stability results, for the initial value problem (2.7), when
the approximation ∂2x ≈ D2

λ is used. The proofs are based on the idea that, since D2
λ

is a real symmetric matrix, there exists a unitary matrix X such that

D2
λ = X�λX

T , (�λ) j, j = μ j , j = 1, 2, . . . , n, (3.17)

where the eigenvalues μ j are real. The stability results are established by a sequence
of Lemmas:

Lemma 3.5 Let D2 = D2
λ , where λ is the regularization parameter, and let U1 and

U2 be two different solutions to (2.7), corresponding to Cauchy data [(g1)�, η�] and
[(g2)�, η�], respectively. Then, if σ =

√

‖D2
λ‖2 − k2 > 0,

‖U1 −U2‖2 ≤ cosh (σ y) ‖(g1 − g2)�‖2. (3.18)

Proof Let X be as defined in (3.17) and introduce a newvariableV (y) = XT (U1−U2).
The system (2.7) simplifies to

Vyy(y) + (k2 I + �λ)V (y) = 0, 0 < y < a, (3.19)

with boundary conditions V (0) = XT (g1 − g2)� and Vy(0) = XT (η − η)� = 0.
Since �λ is a diagonal matrix, the problem (3.19) can be solved for each eigenvalue
μ j individually,

Vyy(μ j , y) + (k2 + μ j )V (μ j , y) = 0, (3.20)

with known boundary conditions V (μ j , 0) and Vy(μ j , 0) = 0. We identify two dis-
tinct cases:

Case 1 If μ j + k2 > 0, we have the general solution as

V (μ j , y) = C1 cos

(√

|k2 + μ j |y
)

+ C2 sin

(√

|k2 + μ j |y
)

, (3.21)

wherewewrite |k2+μ j | to emphasize the fact that we take the square root of a positive
number. The constants C1 and C2 are computed by using the boundary conditions and
we obtain the solution

V (μ j , y) = cos

(√

|k2 + μ j |y
)

V (μ j , 0), and |V (μ j , y)| ≤ |V (μ j , 0)|.
(3.22)

Hence this case does not contribute to the instability of the problem.
Case 2 If μ j + k2 < 0, we have the general solution as

V (μ j , y) = C1e
√|k2+μ j |y + C2e

−√|k2+μ j |y . (3.23)
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Again C1 and C2 are computed by making use of the boundary conditions and the
solution is

V (μ j , y) = cosh

(√

|μ j + k2|y
)

V (μ j , 0). (3.24)

Now, since k2 is positive andμ j +k2 is assumed to be negative, we see that |μ j +k2| ≤
‖D2

λ‖2 − k2 = σ 2. Thus, due to cosh being a monotonically increasing function on
the interval [0,∞), we have

|V (μ j , y)|2 ≤ cosh2(σ y)|V (μ j , 0)|2. (3.25)

Here the magnification factor cosh(σ y) grows as μ j → −∞ and thus these compo-
nents contribute to the instability of the problem.

Finally, since X is orthogonal, we have ‖V ‖2 = ‖U1 −U2‖2 and

‖V ‖22 =
n∑

j=1

|V (μ j , y)|2 ≤ cosh2(σ y)
n∑

j=1

∣
∣V (μ j , 0)

∣
∣2 = cosh2(σ y)‖V (0)‖22,

(3.26)
with ‖V (0)‖2 = ‖(g1 − g2)�‖2. The proof is complete. 
�
Lemma 3.6 Let D2 = D2

λ, with λ as the regularization parameter, and let U1 and
U2 be two different solutions to (2.7), corresponding to Cauchy data [g�, (η1)�] and
[g�, (η2)�]. Then, if σ =

√

‖D2
λ‖2 − k2 > 0,

‖U1 −U2‖2 ≤ σ−1 sinh (σ y) ‖(η1 − η2)�‖2. (3.27)

Proof The proof is similar to that of the previous Lemma. Introduce a new variable
V (μ j , y) = XT (U1 − U2), and note that V (0) = XT (g − g)� = 0 and Vy(0) =
XT (η1 − η2)�. The problem is solved for one eigenvalue at a time,

Vyy(μ j , y) + (k2 + μ j )V (μ j , y) = 0, (3.28)

with known boundary conditions Vy(μ j , 0) and V (μ j , 0) = 0. Again, we have two
cases and if μ j + k2 > 0 the solution can be written

V (μ j , y) =
sin

(√

|μ j + k2|y
)

√

|μ j + k2|
Vy(μ j , 0) =

sin
(√

|μ j + k2|y
)

√

|μ j + k2|y
yVy(μ j , 0).

(3.29)
By making use of the fact that | sin(α)/α| ≤ 1 we obtain

|V (μ j , y)| ≤ y|Vy(μ j , 0)|. (3.30)

Thus the solution components satisfying μ j + k2 > 0 are stable.
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For the case μ j + k2 < 0, the solution can be verified to be

V (μ j , y) =
sinh(

√

|μ j + k2|y)
√

|μ j + k2|
Vy(μ j , 0). (3.31)

Since k2 > 0 and μ j > −‖D2
λ‖2 we have |μ j + k2| ≤ σ 2. Hence, by making use of

the monotonicity of sinh(α)/α, see [18, Lemma 2.5], we obtain

|V (μ j , y)| =
sinh(

√

|μ j + k2|y)
√

|μ j + k2|
|Vy(μ j , 0)| ≤ sinh(σ y)

σ
|Vy(μ j , 0)|. (3.32)

Since, sinh(σ y)/σ > y, for σ, y > 0, the estimate (3.30), obtained for the case
μ j + k2 > 0, also satisfies (3.32). Thus both cases can be combined.

Finally, since X is orthogonal, we have

‖U1(y) −U2(y)‖2 = ‖V (y)‖2 ≤ σ−1sinh(σ y)‖Vy(0)‖2. (3.33)

The final result follows by noting that Vy(0) = (η1 − η2)�. 
�
Proposition 3.7 Suppose that Uλ is the regularized solution to (2.7), with exact data
[g, η], and that U δ

λ is the regularized solution with noisy data [gδ, ηδ], where λ is the

regularization parameter. Then, if D2 = D2
λ and σ =

√

‖D2
λ‖2 − k2 > 0,

‖U δ
λ −Uλ‖2 ≤ cosh(σ y)‖(gδ − g)�‖2 + σ−1 sinh(σ y)‖(ηδ − η)�‖2. (3.34)

Proof Let U1 be the regularized solution to (2.7) with data [g, ηδ]. We have by the
triangle inequality

‖U δ
λ −Uλ‖2 ≤ ‖U δ

λ −U1‖2 + ‖U1 −Uλ‖2

The result then follows by applying Lemma 3.5 and Lemma 3.6 to the respective terms.

�

The above proposition means that the approximation D2 ≈ D2
λ does stabalize the

computations.

4 Simulated numerical examples

The numerical implementation of the splines based approach consists of implementing
the procedure for computing thematrix-vector product D2

λy, for a given vector y ∈ R
n .

With the procedure in place, we are able to solve the initial value problem (2.7) using
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Fig. 1 The analytical solution u(x, y) used for the tests. The wavenumber is k2 = 12 and the domain is
� = [0, 1] × [0, 0.2]. We display the function u(x, y) evaluated on a uniform grid (left graph) and also the
corresponding Cauchy data, i.e. g(x) = u(x, 0) (right,blue/dashed) and η(x) = uy(x, 0) (right,black/solid)

a standard Runge–Kutta method, i.e. ode23 in Matlab, with automatic step size
control.

For all numerical experiments we used a uniform grid of size n = 500 in the x-
variable. Note that we do not need to specify a grid in the y-direction since this is dealt
with implicitly by the Runge–Kutta code. The specific tests are detailed below.

Test 1 For the first test we used k2 = 12, a = 0.2, and the analytical solution

u(x, y) = sin(πx) cosh
(√

π − k2y
)

+ sin(2πx) sinh
(√

4π2 − k2y
)

+ sin(3πx) cosh
(√

9π2 − k2y
)

,

which satisfies theHelmholtz equation in the domain� = [0, 1]×[0, a]. By evaluating
the function u(x, y), and its derivative, for y = 0, we obtain the Cauchy data g(x) =
u(x, 0) and η(x) = uy(x, 0), for 0 < x < 1. The analytical solution, for the case
k2 = 12 and a = 0.2, is illustrated in Fig. 1.

In order to investigate the ill-posedness of the inverse problem we added normally
distributed noise of size δ = 10−3 to the Cauchy data giving us noisy vectors [gδ, ηδ].
The inverse problem was solved for a wide range of regularization parameters λ, i.e.
10−7 ≤ λ ≤ 10−5. For each value of the regularization parameter we computed a
regularized solution f δ

λ (x) := uδ
λ(x, a) and also the error ‖ f δ

λ − f ‖2. In Fig. 2 we
illustrate how the error depends on the parameter λ. We see that there is a trade-off
between enforcing stability, i.e. a large regularization parameter λ, and solving the
Helmholtz equation accurately, i.e. computing the second derivative accurately which
means a small parameter λ. The conclusion is that by selecting an appropriate value
for λ we are able to find a good regularized solution.

In actual applications the exact solution to the problem is unknown and we cannot
compute the error ‖ f δ

λ − f ‖2. Thus another method for finding a good regularization
parameter is needed. The L-curve, originally introduced in [17], is a plot of the norm
of the approximate solution versus the residual in a log−log scale. Since our algorithm
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Fig. 2 We display the L-curve (top-left) and the error ‖ f δ
λ − f ‖2, as a function of λ (top-right). The

L-curve suggests the parameter λ = 2.5 · 10−7 and the minimum error is obtained for λ = 6.3 · 10−7. We
also show the solutions obtained by using the λ value predicted by the L-curve (middle-left) and the λ value
which gives the smallest error (middle-right). Finally, we show the solution obtained using λ = 2 · 10−8

(bottom-left), which adds too little regularization, and λ = 1 · 10−4 (bottom-right), which results in a too
smooth solution. In all cases both the exact solution f (x) (black/solid-curves) and the inverse solution
f δ
λ (x) (blue/dashed-curves) are shown

uses the semi-norm |u|2 as the penalty term it is natural to measure the solution norm
by the second derivative, ‖( f δ

λ )′′)�‖2. In our implementation the second derivative
is approximated using the standard, centered, second order accurate, finite difference
quotient. In order to define a residual we recall that the purpose of the residual is to
measure the missmatch between an approximate solution and the available data. For
our tests we define the residual as follows: Let v(x, t) satisfy the Helmholtz equation,
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Fig. 3 The optimal regularization parameter λ as a function of the noise level δ present in the available
Cauchy data (left graph). Also the error in the computed solution, when the optimal λ is used, as a function
of the noise level (right graph). Here a = 0.2 and k2 = 12

withDirichlet data v(x, a) = f δ
λ (x) andNeumann data vy(0, x) = ηδ(x). The residual

is then defined as ‖v(x, 0) − gδ‖2. Note that this means that the residual is zero for
the exact solution and data. However the residual does not necessarily tend to zero as
λ → 0. In our work we compute the function v(x, t) by a standard finite difference
scheme, see [1,2] for details. The computed L–curve is displayed in Fig. 2.We pick the
regularization parameter λ that correspond to the point closest to the lower-left corner
of the L-curve where both the solution norm and the residual is small. We see that
the solution, obtained by using the parameter λ suggested by the L–curve, is nearly
optimal.

Test 2 In order to further investigate the properties of the smoothing spline reg-
ularization method we carry out tests and find the optimal value of λ, and also the
corresponding errors, as a function of the noise level. For this test the analytic solution
from Test 1 was used with a = 0.2 and k2 = 12. In the experiment we picked a large
range of noise levels, i.e. 10−4 ≤ δ ≤ 10−1, and for each level of noise we determined
the optimal value of λ, i.e. the one that minimize the error ‖ f δ

λ(δ) − f ‖2. The results
are shown in Fig. 3. We see that a smaller amount of noise δ means that we can use a
smaller regularization parameter λ. This is consistent with the stability results derived
in Sect. 3.2.

5 Amodified Helmholtz equation

In this Section we look into solving the Cauchy problem for a modified Helmholz
equation in the rectangle � = [0, 1] × [0, a]. Find u ∈ C2(�) ∩ C1(�̄) such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�u + αu = 0, 0 < x < 1, 0 < y < a,

u(x, 0) = g(x), 0 ≤ x ≤ 1,

uy(x, 0) = η(x), 0 ≤ x ≤ 1,

u(0, y) = u(1, y) = 0, 0 < y < a,

(5.35)
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Fig. 4 A domain �′ is
transformed into the rectangle
� = [0, 1] × [0, a] by a
conformal mapping φ. The
Cauchy data is available on �′

1,
which is mapped onto
�1 = [0, 1] × {0}

φ

Ω

Γ1

Ω

Γ1

where α := α(x, y) is a positive, real valued function defined on the domain �. The
goal is to demonstrate that our Cubic spline regularization method can be used for
solving this more general case.

The modified Helmholtz equation is important in applications since it models wave
propagation in a material with variable density. Also, consider a sitution where a
function v satisfies the Helmholtz equation, with a constant wave number k2, in a
more complicated domain �′, as illustrated in Fig. 4. For simplicity of notation we
identify R2, with the complex plane C. If φ : �′ 
→ � is the conformal mapping that
transforms the domain �′ into the rectangle � then u(z) = v(φ−1(z)), satisfies

|(φ−1)′|2�u + k2u = 0, or �u + αu = 0, (5.36)

where α = k2/|(φ−1)′(z)|2, and (φ−1)′ is understood as the derivative of an inverse
function of a complex variable z. Thus, solving themodifiedHelmholtz equation in the
rectangular domain � is equivalent to solving the ordinary Helmholtz equation in the
more complicated domain �′. Note that it is essential that the domains � and �′ are
topologically equivalent in the sense that corners are mapped onto corners and smooth
boundary segments are mapped onto the sides of the rectangle. Otherwise we would
introduce singularities in the derivative boundary conditions, which is something the
algorithm could not handle.

In order to demonstrate that the cubic spline regularization method can be applied
to the problem (5.35) we select a function

α(x, y) = 7 + sin(x/3) cos(y/2) + 3xy2, (5.37)

and also suitable Dirichlet data u(x, 0) = g(x) and u(x, a) = f (x), with a = 0.2.
The corresponding Neumann Data η(x) = uy(x, 0) was computed by solving the
equation �u + αu = 0, in the rectangle [0, 1] × [0, 0.2], with appropriate Dirichlet
data on the boundary, using a uniform grid of size n = 501 in the x–direction and
m = 101 in the y-direction. The code used for this purpose is a standard O(�x2)
accurate finite difference solver. The computed solution u(x, y), and also the Cauchy
data [ f , η], are illustrated in Fig. 5.

Test 3 For this test the numerical test solution illustrated in Fig. 5 was used. Noisy
Cauchy data was created by adding normally distributed random noise, with variance
10−3 to the exact data vectors. We then solved the inverse problem for a wide range
of regularization parameter values λ. The results are shown in Fig. 6. Again we see
that there is an optimal regularization parameter, that represents the appropriate com-
promise between stability and accuracy. By using this parameter value we are able to
reconstruct the solution accurately.

123



Solving the Cauchy problem for the Helmholtz equation using… 1347

0 0.2 0.4 0.6 0.8 1

xlabel: x

-8

-6

-4

-2

0

2

4

D
at

a:
 g

(x
)=

u(
x,

0)
 a

nd
 

(x
)=

u
y(x

,0
)

Fig. 5 The numerically constructed test solution u(x, y) (left graph), for the case of the modified Helmholtz
equation. The domain is � = [0, 1] × [0, 0.2]. We also display the Cauchy data, i.e. g(x) = u(x, 0)
(right,blue/dashed) and η(x) = uy(x, 0) (right,black/solid)
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Fig. 6 We display the error ‖ f δ
λ − f ‖2, as a function of λ (top-left). The error is minimized for λ = 2 ·10−7

and the corresponding regularized solution f δ
λ (x) is also displayed (top-right,blue curve) together with the

exact solution f (x) (top-right,black-curve). The ill-posedness of the problem is illustrated by plotting the
solution corresponding to λ = 5 ·10−8 (bottom-left) which adds to little regularization. We also display the
solution corresponding to λ = 8 ·10−6 (bottom-right) which means too much added stability. In both cases
the regularized solution f δ

λ (blue/dashed curves) and the exact solution f (black/solid curves) are shown
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We also remark that experiments with different noise levels and different parameter
values show that our method works well for the modified Helmholtz equation. The
problem is severely ill-posed but still it is relatively easy to find a value for λ that
works well.

6 Concluding remarks

In this paper we have developed a regularization method for solving the Cauchy
problem for the Helmholtz equation based on Cubic smoothing splines. In our work
we have developed a stability theory for the discrete problem that is solved numerically.
One of the results is a matrix approximation of the second derivative for which we
have obtained a norm-bound. The stability results are comparable to those obtained
by different authors using similar methods.

Numerical experiments show that the method works well and can produce accurate
results. For the experiments we have also introduced a residual that allows us to find
appropriate regularization parameters by using the L–curve method. In our tests the
parameters obtained from the L–curve are close to the optimal ones. We remark that
the residual definition is clearly not optimal. Since we have to solve a well-posed
boundary value problem to compute the residual we will have numerical errors. Thus,
for a fixed step size for the discretization, the residual will not tend to zero as the
noise level tends to zero. Also, since the Cauchy problem for the Helmholtz equation
is severely ill-posed the results are quite sensitive with respect to the regularization
parameter λ. More work is needed to obtain a good, and practical, parameter selection
strategy.

The derived stability results, see Sect. 3.2, essentially show that as long as
exp(ac3λ−1/4)δ → 0, as δ → 0, then the propagated data error satisfies ‖Uλ(δ) −
U δ

λ(δ)‖2 → 0. One potential parameter choice rule is

λ(δ) =
(

− 1

ac3
log

√
δ

)−4

, (6.38)

which means exp(ac3λ−1/4)δ = δ1/2. Since, by this rule, λ(δ) → 0 as δ → 0, we
apply less and less regularization as the noise level is reduced, and thus it is resonable
to expect that the appxoximation error ‖Uλ −U‖2 also tends to zero. A formal proof
of convergence for the above parameter choice rule is something we intend to do in
future work.

For our work we have primarily considered rectangular domains but in actual appli-
cations it is often the case that the Helmholtz equation is valid in a more complicated
domain. Thus we extend our method to also treat the modified Helmholtz equation,
i.e �u + αu = 0, where α(x, y) > 0 is a function. This allows us to use a conformal
mapping, or orthogonal mapping, to transform the domain under consideration to a
rectangle. In this paper we only have initial numerical tests but this is something we
intend to develop further in the future.
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In the future we intend to apply our method to similar problems and make more
systematic comparisons with the work of others, e.g. [3,11,14]. We also hope to apply
the method to medical problems with measured data.
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