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Abstract

The treatment of 1 + 3 covariant perturbation in a multifluid cosmology with the consideration
of f(G) gravity, G being the Gauss-Bonnet term, is done in the present paper. We define a set
of covariant and gauge-invariant variables to describe density, velocity and entropy perturba-
tions for both the total matter and component fluids. We then use different techniques such
as scalar decomposition, harmonic decomposition, quasi-static aproximation together with the
redshift transformation to get simplified perturbation equations for analysis. We then discuss
number of interesting applications like the case where the universe is filled with a mixture of
radiation and Gauss-Bonnet fluids as well as dust with Gauss-Bonnet fluids for both short-
and long-wavelength limits. Considering polynomial f(G) model, we get numerical solutions of
energy density perturbations and show that they decay with increase in redshift. This feature
shows that under f(G) gravity, specifically under the considered f(G) model, one expects that
the formation of the structure in the late Universe is enhanced.
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1 Introduction

The recent observations have revealed that the Universe is experiencing cosmic accelaration
[1, 3]. The aforementioned cosmic accelaration is sometimes explained by imposing dark en-
ergy, a fluid with a negative pressure. This component may be a vacuum energy giving rise to
the standard model of cosmology dubbed Λ CDM, or a scalar field [4].
On the other side, cosmologists suggested that General Relativity (GR) need to be modified on
large scale and at late time [5]. This suggestion helps to explain the source of cosmic accelera-
tion giving rise from the dynamics of modified theories of gravity rather than the dark energy
as substance [6, 7].

Additionally, studying cosmological perturbations help to analyse the dynamics of the Universe
on both GR and modified theories of gravity. One can use metric formalism, a gauge-dependent
formalism [8] to treat perturbations. This formalism brings in some complications when one
needs to extract physical information from the perturbation variables [9, 10, 11, 12, 13].
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On the other hand, many authors applied the 1 + 3 covariant and Gauge-Invariant formalism,
which leaves no physical modes in the evolution of perturbations [14]. Several authors have
adopted this framework in GR [12, 13, 15], in f(R) [15, 16, 17, 18, 19] , in scalar tensor theories
[20, 21, 22],in f(T ) [23] and in f(G) [24], R is the Ricci scalar, G is the Gauss-Bonnet term
and T is the torsion scalar.

In the present work, we advocate to use the 1+3 covariant formalism to treating perturbations
in multifluid universe. The 1 + 3 covariant linear perturbations theory have been employed
to explain cosmic large scale structure formation. In the recent paper [25], we studied cosmo-
logical perturbations in f(G) gravity for a two fluid system at linear order using exponential,
logarithmic and trigonometric f(G) models. These models have been proposed by [31, 32]. In
the current paper, we extend our analysis to linear perturbations for a multifluid system in
f(G) theory of gravity.
We treat our discussion of a multifluid perturbation as an extension of the previous work with
a consideration of different f(G) model. This is necessary since the Universe is composed of
different fluids such as relativistic particles, radiation, dust, cold dark matter and many others.
The extension to a multifluid cosmology is found interesting also in different works in modified
theories of gravity such as in f(R) [13, 18, 26], and in scalar tensor theories of gravity [27].

The f(G) theories of gravity received green light to be able to explain the cosmic accelera-
tion motivated by the epoch for which one can experience the cosmic acceleration reproduced
without the implication of dark energy hypothesis [6, 24] and can also be adequate to study cos-
mology of early and late time universe [28]. For instance in the work done by[29], cosmological
inflation in f(R,G) gravity was studied. The consideration of f(R,G) produces the situation
where the cosmic dynamic is driven by double inflation scenario due to the consideration of
non-linear R and G terms. In the work done in [30], the cosmic history was explored under the
same consideration of f(R,G) gravity by taking into account the cosmography where it was
clearly shown that double inflation can naturarly be achieved to evantually produce large and
very large structure.

To study the 1 + 3 covariant perturbations in a multifluid universe within f(G) theories of
gravity and to know how these perturbations evolve worth attention. In the present work, we
develop and consider a polynomial f(G) model to analyse the energy density perturbations in a
multifluid system, where we consider non-interacting fluids. All the considered models in both
works are proven to be viable models that are compatible with cosmological observations and
they are representative examples of models that could account for the late-time acceleration of
the universe without the need for dark energy [33].
It is believed that the dynamical evolution of small energy density perturbations seeded in the
early universe led to large scale structure formation. The 1 + 3 covariant formalism is used for
studying cosmological perturbations, developed to analyse the evolution of linear perturbations
of Friedmann-Robertson-Walker (FRW) models in different theories of gravity. In [25], the
evolution of scalar perturbations of FRW was developed for a single barotropic fluid using the
1 + 3 covariant formalism in f(G) gravity focussing on two-fluid systems. The solutions of the
perturbation equations on large scale structure showed that the energy density perturbations
decay with increase in redshift, implying more structure formation rate today. However since
the Universe is made of a mixture of fluids, a complete treatment of perturbations requires
taking all the fluid into account.

2



The aim of this paper is therefore to present a general framework for studying multifluid
cosmological perturbations with a complete general equation of state in an f(G) theory of
gravity, using the 1 + 3 covariant formalism. In this context, we define the gradient variables of
Gauss-Bonnet fluid in addition to the gradient variables of the physical standard total matter
and component fluids to get a complete set of linear perturbation equations.

For analysis, we use harmonic decomposition method to get a set of ordinary differential equa-
tions which are time dependent. Using redshift transformation technique, quasistatic approxi-
mation, specifically when considering short wavelength limit, together with a polynomial f(G)
model, we get a simplified set of perturbation equations for numerical results.

The next part of this paper is organised as follows: in Section 2, we cover the general de-
scription of the 1 + 3 covariant approach. In Section 3, we present matter description where we
discuss the choice of frame and define the key variables used in the description of perturbations
in the total fluid and the individual fluid components. Equations for these variables are given
in Section 4. In Sections 5, 6 and 7, respectively, the scalar , second order equations and the
harmonically decomposed forms of the developed equations are considered. Applications to
a radiation-dust-Gauss-Bonnet cosmological medium and the analysis of the short- and long-
wavelength modes of the perturbation equations are given in Section 8, with Section 9 devoted
to discussion and conlusion.

The adopted spacetime signature is (−,+,+,+) and unless stated otherwise, we use µ, ν .
. . = 0, 1, 2, 3 and 8πGN = c = 1, where GN is the gravitational constant and c is the speed
of light and we consider Friedmann–Robertson–Walker (FRW) spacetime background in this
work. The symbols 5 represents the usual covariant derivative and ∂ corresponds to partial
differentiation and an over-dot shows differentiation with respect to proper time.
For an arbitrary f(G) gravity the action can be written as

S =
1

2κ2

∫
d4x
√
−g (R + f(G) + Lm) . (1)

Here κ = 8πGN is a constant, f(G) is a differentiable function of the Gauss-Bonnet term G
and Lm is the matter Lagrangian. The Gauss-Bonnet term is given by

G = R2 − 4RµνR
µν +RµνσλR

µνσλ, (2)

where R, Rµν and Rµνσλ are the Ricci scalar, Ricci tensor and Riemann tensor respectively. The
information about the content is contained within the energy-momentum tensor Tµν . Different
authors working on Gauss-Bonnet gravity as alternative theory to GR [35, 36, 37, 38, 39, 40,
41, 42, 43, 44]. By varrying the action (eq. 1) with respect to the metric gµν and set κ = 1, we
get the modified Einsten equations

Rµν −
1

2
gµνR = Tmµν +

1

2
gµνf − 2f ′RRµν + 4f ′Rµ

λR
νλ − 2f ′RµνστRλστ

b

−4f ′RµλσνRλσ + 2R5µ5νf
′ − 2Rgµν 52 f ′ − 4Rνλ5λ5µf ′

−4Rµλ5λ5νf ′ + 4Rµν 52 f ′ + 4gµνRλσ 5λ5σf
′ − 4Rµλνσ 5λ5σf

′ , (3)

where f ≡ f(G) and f ′ = ∂f
∂G

. Tmµν is the energy momentum tensor of the fluid matter (Photons,
baryons, cold dark matter, and light neutrinos). writing equation eq. 3 in more compact form
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as

Rµν −
1

2
gµνR = Tmµν + TGµν , (4)

where

TGµν =
1

2
gµνf − 2f ′RRµν + 4f ′Rµ

λR
νλ − 2f ′RµνστRλστ

b − 4f ′RµλσνRλσ

+2R5µ5νf
′ − 2Rgµν 52 f ′ − 4Rνλ5λ5µf ′ − 4Rµλ5λ5νf ′

+4Rµν 52 f ′ + 4gµνRλσ 5λ5σf
′ − 4Rµλνσ 5λ5σf

′ . (5)

For the case f(G) = G, equation eq. 5 vanishes (TGµν = 0), hence the Einstein gravity is
recovered

Rµν −
1

2
gµνR = Tmµν . (6)

For a spatially flat FRW universe,

ds2 = −dt2 + a2dX2, (7)

where X = x, y, z, the equation (0,0 component of eq. 3) corresponding to the Friedmann
equation is presented as follows:

3H2 =
1

2

(
Gf ′ − f − 24ĠH3f ′′

)
+ ρm , (8)

G = 24H2(Ḣ +H2) , (9)

R = 6(Ḣ + 2H2) , (10)

where H = ȧ
a

is the Hubble parameter. The Friedmann equations in the Einstein gravity is
presented as

ρm = 3H2 , (11)

pm = −(3H2 + 2Ḣ) , (12)

it follows that the FRW like equations in f(G) gravity are given as

ρtotal = 3H2 , (13)

ptotal = −(3H2 + 2Ḣ) , (14)

ρtotal = ρG + ρm , (15)

ptotal = pG + pm , (16)

where [49]

ρG =
1

2

(
Gf ′ − f − 24ĠH3f ′′

)
, (17)

pG =
1

2

(
f − f ′G+

2GĠ

3H
f ′′ + 8H2G̈f ′′ + 8H2Ġ2f ′′′

)
. (18)

For the case f(G) = G, ρG = 0 = pG, so that eq. 15 and eq. 16 ressemble to eq. 11 and eq. 12
respectively. We assume that matter can be described by a barotropic perfect fluid such that
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p = wρ.
In the FRW universe, the energy conservation law can be expressed as standard equation as

ρ̇+ 3H(ρ+ p) = 0. (19)

The general solution is given as
ρ = ρ0t

−3m(1+w). (20)

We assume an exact power law solution for the field equations to be

a(t) = a0t
m, (21)

where m is a positive constant. Using eq. 21 in eq. 9 and eq. 10, we have

G =
24m3(m− 1)

t4
, (22)

Ġ = −96m3(m− 1)

t5
, (23)

and

R =
6m(2m− 1)

t2
. (24)

Using eq. 21 through to eq. 24 in eq. 8, we get a differential equation for the function f(G) in
G space presented as

4G2

m− 1
f ′′ +Gf ′ − f + ρ0

(
G

24m3(m− 1)

) 3
4

(m(1+w))

−
(

3mG

8(m− 1)

) 1
2

= 0. (25)

The general solutions of eq. 25 is given as

f(G) = C1G+ C2G
− 1

4
(m−1) − 1

2

(√
6m(m− 1)G

(m+ 1)2
+ AG

3
4
m(1+w)

)
, (26)

A =
8ρ0(m− 1) [13824m9(m− 1)3]

− 1
4
m(1+w)

4 +m
[
3m(1 + w)(w + 4

3
)− 18w − 19

] , (27)

where C1 and C2 are constants of integration. This solution (eq. 26) is in agreement with the
ones obtained in [55, 56] for a flat universe. Assuming C1 = 1,C2 = 0, the solution eq. 26 can
be represented as

f(G) = G− 1

2

(√
6m(m− 1)G

(m+ 1)2
+ AG

3
4
m(1+w)

)
. (28)

For the case m = 1, f(G) ∼ G, G ∼ 0 (eq. 22) and R ∼ t−2 (eq. 24) so that we recover
GR case with a power law solution as presened in eq. 21 and energy density ρm as presented
in eq. 20. Referring to eq. 21 we can set m = 2

3(1+w)
for the GR limit. For m = 1, the

equation of state parameter is set to w = −1
3
, to account for a negative pressure but not yet

an accelerating universe. In order to produce an accelerating universe, we set m � 1 and
4 + m

[
3m(1 + w)(w + 4

3
)− 18w − 19

]
6= 0, with w = [−1, 1]. In the late times, the f(G)

term should become dominant as compared with the matter lagrangian density. For more
about the period where Einstein or Gauss-Bonnet term dominates one another, see [2]. This
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f(G) cosmological model can also give the possibility to produce inflation driven by G thanks
to the use of linear R and non-linear G, since linear R produce GR while linear G vanishes.
Power-law solutions were obtained in [59] while treating pure f(G) Noether cosmology. In [58] a
cosmological dynamical system analysis was done in power-law f(R,G) model and discussed the
possibility to fix the form of f(R,G)-lagrangian by existence of of symmetry using particulary
the Noether symmetry approach. We will use the defined f(G) model for the purpose of using
the 1 + 3 perturabtion equations in the analysis sections in order to see whether the formation
of structure is enhanced or not and to explain the current cosmic acceleration.

2 The 1 + 3 covariant perturbations in f (G) gravity

2.1 Introduction

The 1+3 covariant formalism leaves no physical modes in the evolution of the fluctuations when
it comes to extracting physical information from the perturbation variables. In this formalism,
spacetime is split into space and time, where 1 + 3 refers to the number of dimensions involved
in each slice to investigate the deviation from homogeneity and isotropy of the Universe. The
4-velocity field vector ua is defined as

ua =
dxa

dτ
, (29)

where τ is the proper time such that uaua = −1.

2.2 Kinematic quantities

The geometry of the fluid flow lines is determined by the kinematics of ua [45, 46] as

5b ua = 5̃bua − u̇aub, (30)

with

5̃bua =
1

3
θhab + σab + ωab. (31)

Substituting eq. 30 into eq. 31, we get an important equation relating our key kinematic
quantities

5a ua = −ubu̇a +
1

3
θhab + σab + ωab. (32)

Where u̇a is the acceleration of fluid flow, θ is the expansion, hab = gab + uaub is the projection
tensor, gab is the metric, σab is shear and ωab is the vorticity.
Another key equations are defined as:
The conservation equations:

ρ̇− θ (ρ+ p) = 0 , (33)

5̃ap− (ρ+ p) u̇a = 0. (34)

The propagation equation for the expansion - the Raychaudhuri equation for the FRW back-
ground, the equation of state and the Friedmann equation :

θ̇ − 5̃au̇a = −1

3
θ2 − 1

2
(ρ+ 3p) , (35)

p = p(ρ, s) , (36)

θ2 +
9K

a2
− 3ρ = 0 , (37)
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form a closed system of equations and completely characterize the kinematics of the background
cosmological model [26, 33, 47, 48]. K stands for the curvature of the universe (for flat universe,
K = 0) and a stand for the cosmological scale factor.

3 Matter description

3.1 Effective total energy-momentum tensor

The total energy momentum tensor in a general frame is sourced by

Tab = ρuaub + phab + 2qaub + πab = Tmab + TGab, (38)

where ρ, p, qa and πab represent the energy density, isotropic pressure, energy flux and the
anisotropic pressure respectively. Note that the superscript G is neither a power nor a running
index, it shows the contribution from Gauss-Bonnet term. With

ρtotal = T totalab uaub = ρm + ρG , (39)

ptotal =
1

3
T totalab hab = pm + pG , (40)

qtotala = −T totalbc hbau
c = qma + qGa , (41)

πtotalab = T totalcd hcah
d
c = πmab + πGab , (42)

where ρm, pm, qma and πmab represent the effective thermodynamic quantities of matter and ρG,
pG, qGa and πGab represent the thermodynamic quantities of the Gauss-Bonnet fluid contribution.
For multi component fluid, we have

Tmab =
∑
i

T iab , (43)

where

T iab = ρiu
i
au

i
b + pih

i
ab + qiau

i
b + qibu

i
a + πiab , (44)

hiab = gab + uiau
i
b , (45)

uia being the normalized 4-velocity vectorfor the ith component. Decomposing the matter stress
energy momentum tensor with respect to the 4 velocity ua gives the following thermodynamic
quantities

ρm = Tmabu
aub =

N∑
i=1

ρi , (46)

pm =
1

3
Tmabhab =

N∑
i=1

pi , (47)

qma = −Tmbc hbcuc =
N∑
i=1

(ρi + pi)V
i
a , (48)

πmab = Tmcdh
c
ah

d
b = 0 . (49)

There are two different frame:The particle frame also known as Eckart choice where ua = uaN ,
an observer uN sees no particle drift and the Energy frame ua = uaE also known as the Landau
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choice, an observer measures no energy flux qa = qEa = 0 along the flow line. Choosing a
relevant frame is important in the covariant formulation of perturbation theories [12, 18, 26].
In this paper we choose the fluid flow vector ua to coincide with the energy frame uaE so that
the exact FRW models will be characterized by a vanishing shear and vorticity of ua and all
spatial gradient variables orthogonal to ua of any scalar quantity.

By Choosing the energy frame, we can set qia = qaEi = 0 and for a perfect fluid, a unique
hydrodynamic 4-velocity ua can be defined for the fluid flow so that there is no energy flux and
no anisotropic pressure, hence the energy momentum tensor is presented as

Tab = ρuaub + phab, (50)

where ρ and p are related by the equation of state

p = p(ρ, s), (51)

s represent the entropy, and for the component fluid, we have

T iab = ρiu
i
au

i
b + pih

i
ab. (52)

The velocity of the ith fluid component relative to the fundamental observer is defined as

V a
i = uai − ua. (53)

In the background FRW universe, V a
i = 0 and all perfect fluid components have the same 4-

velocity. Using Stewart-Walker lemma [50], all spatial gradients orthogonal to ua of any scalar
quantity vanish so that

σab = ωab = 0, 5̃aX = 0, (54)

it follows
Xa = 5̃ρ = 0, Ya = 5̃p, Za = 5̃θ = 0 (55)

in the background, then ρ = ρ(t), p = p(t) and θ = θ(t).

3.2 Standard inhomogeneity variables for the total matter

The inhomogeneities of matter are characterized by

Dm
a =

a5̃aρm
ρm

, Za = a5̃aθ , Y
m
a = 5̃apm , εa =

a

pm
(
∂p

∂s
)5̃as . (56)

Where a = a(t) is the usual FRW cosmological scale factor. Dm
a and Za define the comoving

fractional density gradient and comoving gradient of the expansion respectively and can in
principle be measured observationally. The subscript a presented in Dm

a and Za is not a scale
factor nor a running index but an index. We define the effective barotropic equation of state
and speed of sound of the total matter fluid, respectively as

w =
p

ρ
, c2
s =

∂p

∂ρ
. (57)
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3.3 Matter inhomogeneity variables for the components

The variables characterizing inhomogeneities of matter for the ith - component fluid are defined
as

Di
a =

a5̃aρi
ρi

, Y i
a = 5̃ap

i
m , εia =

a

pi
(
∂pi

∂si
)5̃asi . (58)

We define the relation

pεa =
∑
i

piε
i
a +

1

2

∑
i,j

hihj
h

(
c2
si − c2

sj

)
Sija , (59)

that contain the dimensionless variable εa that quantifies entropy perturbations in the total
fluid, hi = ρm + pm for the total matter and hi = ρi + pi for the component fluid, c2

si and c2
sj

denote the speed of sound of the component matter fluid given as c2
si = ∂pi

∂ρi
.

3.4 Gauss-Bonnet fluid variables

The Gauss-Bonnet fluid variables are defined as

Ga = a∇̃aG ,Ga = a∇̃aĠ . (60)

The above gradient variables characterize perturabtions due to Gauss-Bonnet parameter G and
its momentum Ġ and they descibe the inhomogeneities in the Gauss-Bonnet fluid.

4 Linear evolution equations in the Energy frame

We derive linear evolution equations for the defined gradient variables in the energy frame of
matter fluid.

4.1 Total fluid equations

Total fluid equations characterize the temporal fluctuations of inhomogeneities in perfect cos-
mological fluid with an equation of state parameter evolving as ẇ = (1 +w)(w − c2

s)θ, and are
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given as

Ḋm
a = −(1 + w)Za + θc2

sD
m
a + wθεa , (61)

Ża =

(
−1

3
θ2 +

3

2
(w − 1) ρm −

1

2
f +

1

2
Gf ′ − 2

3
θ2G̈f ′′ +

2

9
θ3Ġf ′′ − 3

2θ
GĠf ′′ − 2

3
θ2Ġ2f ′′′

)(
c2
s

1 + w
Dm
a

)
− c2

s

1 + w
5̃2

aD
m
a + {f ′′(θf ′ −G+

3Ġ

2θ
)− 3GĠf ′′′

2θ
− 3f ′′Ġ

2θ
− 2

3
θ2Ġ2f iv − 2

3
θ2G̈f ′′′

+
f ′′′

f ′′
(

9G

16θ2
+
θ2

6
+

1− 3w

2
ρm − f +Gf ′ − 2θ2Ġ2

3
f ′′′) +

1

2
f ′′ +

2

9
θ3Ġf ′′′}Ga

+

(
−1

3
θ2 − 1

2
(1 + 3w) ρm −

1

2
f +

1

2
Gf ′ − 2

3
θ2G̈f ′′ +

2

9
θ3Ġf ′′ − 3

2θ
GĠf ′′ − 2

3
θ2(Ġ)2f ′′′

)(
w

1 + w
εa

)
− w

1 + w
5̃2

aεa + {2

9
θ3f ′′ +

3G

2θ
f ′′ +

4θ2Ġ

3
f ′′′ +

2

9
θ3f ′′ − 4

3
θ2Ġf ′′′ − 3f ′′G

2θ
}Ga

+{ 9

4θ3
+

1− 3w

θ
ρm +

G

2θ
f ′ + f ′′(

2θ2Ġ

9
− 9GĠ

2θ2
)− 1

2θ
f − 2

3
θ +

2

3
θ2Ġf ′′ +

3GĠf ′′

2θ2

−4

3
θĠ2f ′′′ − 4

3
θG̈f ′′}Za , (62)

Ġa = Ga +
c2
s

1 + w
ĠDm

a − wĠεa , (63)

Ġa = {3(1− 3w)

4

ρm
θ2f ′′

− c2
s

(1 + w)
G̈}Dm

a + {−θ
3
− 9

4

G

θ3
− 2

f ′′′Ġ

f ′′
}Ga + { 1

θ2f ′′
(

27

32θ2
+

3

2
f ′)

+
f ′′′

θ2f ′′

(
−27

32

G

θ2
− θ2

4
− 3(1− 3w)

4
ρm +

3

2
f − 3

2
Gf ′ + Ġ2θ2f ′′′

)
− 3

2θ
f ′ +

3

2θ2
G

− 9

4θ

3

Ġ− Ġ2f iv

f ′′
}Ga + { 1

θ2f ′′

(
− 27

8θ3
− 3(1− 3w)ρm

2θ
+

3

θ
f − 3

θ
Gf ′

)
− Ġ

3
+

27

4θ4
GĠ}Za (64)

+
wG̈

1 + w
εa . (65)

4.2 Component equations

For the component matter and velocity fluctuations, the equations describing the evolution of
the individual fluid component fluctuations are given as

Ḋi
a = −(1 + wi)Za +

(
wi − c2

si

)
θDi

a +

(
−1 + wi

1 + w
c2
sθ

)
Da +

(
−(1 + wi)

w

1 + w
θ

)
εa

−θwiεia − (1 + wi)a5̃a5̃
b
V i
b , (66)

V̇ i
a −

(
3c2
si − 1

) θ
3
V i
a =

1

a(1 + w)

(
c2
sDa + wεa

)
− 1

a(1 + wi)

(
c2
siD

i
a + wiε

i
a

)
. (67)

The equations involving the gradients of the inhomogeneities in the expansion and Gauss-
Bonnet variables (Za, Ga, Ga) remain the same as in the total fluid components since they do
not represent the individual components of matter in the fluids.
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4.3 Relative equations

We define the variables that relate features of different components of the fluid and derive their
evolution equations

V ij
a = V i

a − V j
a , (68)

Sija =
ρiDi

hi
− ρjD

i
a

hj
, (69)

with h = ρ+ p and hi = ρi + pi.
These quantities help us to distinguish adiabatic and isothermal perturbations. Their evolution
equations are given as

Ṡija = −a5̃a5̃
b
V ij
b , (70)

V̇ ij
a =

(
c2
si − c2

sj

)
θV i

a +
(
3c2
sj − 1

) θ
3
V ij
a +

(
c2
sj

a(1 + wi)
− c2

si

a(1 + wi)

)
Di
a

− wi
a(1 + wi)

εia −
c2
sj

a
Sija +

wj
a(1 + wj)

εja . (71)

The quantities we descibe so far are general evolution equations containing both the scalar
and vector parts. In the next section, We present the spherically symetric, scalar density
perturbations since it is belived that structure formation on cosmological scales follow spherical
clustering.

5 Scalar equations

We extract the scalar part of the perturbation vectorial gradients by taking the divergence of
the gradiant quantities

5.1 Scalar gradient variables

On the basis of the above decomposition scheme, we have

∆m = a5̃a
Dm
a , Z = a5̃a

Za,G = a5̃aGa, G = a5̃a
Ga, ε = a5̃a

εa,

∆i
m = a5̃a

Di
a, Vij = a5̃a

V ij
a , Sij = a5̃a

Sija andVi = a5̃a
V i
a . (72)
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5.2 Linear evolution equations for Scalar variables

The scalar gradient variables describing the total fluid evolve as

∆̇m = −(1 + w)Z + c2
sθ∆

m + wθε , (73)

Ż =

(
−1

3
θ2 − 1

2
(1 + 3w) ρm −

1

2
f +

1

2
Gf ′ − 2

3
θ2G̈f ′′ +

2

9
θ3Ġf ′′ − 3

2θ
GĠf ′′ − 2

3
θ2Ġ2f ′′′

)(
c2
s

1 + w
∆m

)
−(1− 3w)ρm∆m − c2

s

1 + w
5̃2

a∆
m + {f ′′(θf ′ −G+

3Ġ

2θ
)− 3GĠf ′′′

2θ
− 3f ′′Ġ

2θ
− 2

3
θ2Ġ2f iv

−2

3
θ2G̈f ′′′ +

f ′′′

f ′′
(

9G

16θ2
+
θ2

6
+

1− 3w

2
ρm − f +Gf ′ − 2θ2Ġ2

3
f ′′′) +

1

2
f ′′ +

2

9
θ3Ġf ′′′}G

+

(
−1

3
θ2 − 1

2
(1 + 3w) ρm −

1

2
f +

1

2
Gf ′ − 2

3
θ2G̈f ′′ +

2

9
θ3Ġf ′′ − 3

2θ
GĠf ′′ − 2

3
θ2(Ġ)2f ′′′

)(
w

1 + w
ε

)
− w

1 + w
52 ε+

4

9
θ3f ′′G + { 9

4θ3
+

1− 3w

θ
ρm +

G

2θ
f ′ + f ′′(

2θ2Ġ

9
− 9GĠ

2θ2
)− 1

2θ
f − 2

3
θ

+
2

3
θ2Ġf ′′ +

3GĠf ′′

2θ2
− 4

3
θĠ2f ′′′ − 4

3
θG̈f ′′}Z , (74)

Ġ = G +
c2
s

1 + w
Ġ∆m − wĠε , (75)

Ġ = {3(1− 3w)

4

ρm
θ2f ′′

− c2
s

(1 + w)
G̈}∆m + {−θ

3
− 9

4

G

θ3
− 2

f ′′′Ġ

f ′′
}G + { 1

θ2f ′′
(

27

32θ2
+

3

2
f ′)

+
f ′′′

θ2f ′′

(
−27

32

G

θ2
− θ2

4
− 3(1− 3w)

4
ρm +

3

2
f − 3

2
Gf ′ + Ġ2θ2f ′′′

)
− 3

2θ
f ′ +

3

2θ2
G

− 9

4θ

3

Ġ− Ġ2f iv

f ′′
}G + { 1

θ2f ′′

(
− 27

8θ3
− 3(1− 3w)ρm

2θ
+

3

θ
f − 3

θ
Gf ′

)
− Ġ

3
+

27

4θ4
GĠ}Z

+G̈
w

(1 + w)
ε . (76)

The scalar variables describing components inhomogeneities and interactions in the fluids are
given as

∆̇i
m = −(1 + wi)Z +

(
wi − c2

si

)
θ∆i

m −
(

1 + wi
1 + w

c2
s

)
θ∆m − (1 + wi)

w

1 + w
θε− wiθεi

−a (1 + wi)52 Vi , (77)

V̇i =

(
c2
si −

1

3

)
θVi +

1

a(1 + w)

(
c2
s∆m + wε

)
− 1

a(1 + wi)

(
c2
si∆

i
m + wiε

i
)
, (78)

V̇ij =
(
c2
si − c2

sj

)
θVi +

(
c2
sj −

1

3

)
θVij −

(
c2
si

a(1 + wi)
−

c2
sj

a(1 + wi)

)
∆i
m −

wi
a(1 + wi)

εi

−
c2
sj

a
Sij +

wj
a(1 + wj)

εj , (79)

Ṡij = −a52 Vij. (80)
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6 Second order equations

All the derived first order equations can be reduced to a set of linearly independent second
order equations for simplicity and making comparison to general relativity easier. By making
second derivaive of the linear evolution equations, we have
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∆̈m = −(−θ2 +
9

4θ2
− θ̇ +

(w2 + 2
3
w − 1

3
)

c2
s

ρm + (
1

2
− 9

2
w)ρm − f +Gf ′

−2θ2G̈f ′′ +
8

9
θ3Ġf ′′ − 2θ2Ġ2f ′′′ + f ′′(

2θ3Ġ

9
− 9GĠ

2θ
))
(
c2
s∆

m
)

−{ 9

4θ3
− (

2

3
+ c2

s)θ +
1− 3w

θ
ρm +

G

2θ
f ′ + f ′′(

2θ2Ġ

9
− 9GĠ

2θ2
)− 1

2θ
f

+
2

3
θ2Ġf ′′ +

3GĠf ′′

2θ2
− 4

3
θĠ2f ′′′ − 4

3
θG̈f ′′}∆̇m + c2

s5̃
2

a∆
m

−(1 + w){f ′′
(

1

2
+ θf ′ −G+

3Ġ

2θ

)
− 3GĠf ′′′

2θ
− 3f ′′Ġ

2θ
− 2

3
θ2Ġ2f iv

−2

3
θ2G̈f ′′′ +

f ′′′

f ′′

(
9G

16θ2
+
θ2

6
+

1− 3w

2
ρm − f +Gf ′ − 2θ2Ġ2

3
f ′′′

)
+

2

9
θ3Ġf ′′′}G

−{ 9

4θ2
− θ2 − θ̇ + (

1

2
− 9

2
w)ρm +Gf ′ + f ′′

(
10

9
θ3Ġ− 9

2θ
GĠ− 2θ2G̈

)
−2θ2Ġ2f ′′′} (wε) + wθε̇+ w52 ε− (1 + w)

4

9
θ3f ′′G , (81)

G̈ = {− c2
sθĠ

3(1 + w)
+

27c2
s

4(1 + w)θ3
GĠ+

1

θ2f ′′
(
3(1− 3w)

4
ρm −

27

8θ2

c2
s

1 + w
− 3(1− 3w)

2

c2
s

1 + w
ρm

+3
c2
s

1 + w
f − 3

c2
s

1 + w
Gf ′)}∆m

+{ 1

θ2f ′′

(
− 27

8(1 + w)θ3
− 3(1− 3w)

2(1 + w)θ
ρm +

3

(1 + w)θ
f − 3

(1 + w)θ
Gf ′

)
3c2
s − 1

3(1 + w)
Ġ+

27

4(1 + w)θ4
GĠ}∆̇m + {−θ

3
− 9

4

G

θ3
− 2Ġ

f ′′′

f ′′
}G

+{ 1

θ2f ′′

(
− 27

8θ2

w

1 + w
− 3(1− 3w)

2

w

1 + w
ρm +

3w

1 + w
f − 3w

1 + w
Gf ′

)
− wθĠ

3(1 + w)
+

27w

4(1 + w)θ3
GĠ+ G̈

w

(1 + w)
− wG̈}ε− wĠε̇

+{ 1

θ2f ′′
(

27

32θ2
+

3

2
f ′)− 3

2θ
f ′ +

3

2θ2
G− 9

4θ

3

Ġ− Ġ2f iv

f ′′

+
f ′′′

θ2f ′′

(
−27

32

G

θ2
− θ2

4
− 3(1− 3w)

4
ρm +

3

2
f − 3

2
Gf ′ + Ġ2θ2f ′′′

)
}G , (82)

∆̈i
m = −(1 + wi)c

2
s

1 + w
(−θ2 +

9

4θ2
+ θ̇ + (

1

2
− 9

2
w)ρm − f +Gf ′ − 2θ2Ġ2f ′′′ − (1− 3w)(1 + w)

c2
s

ρm

+f ′′(
10θ3Ġ

9
− 9GĠ

2θ
− 2θ2G̈))∆m

−(1 + wi)

1 + w
{ 9

4θ3
+ c2

sθ +
1− 3w

θ
ρm +

G

2θ
f ′ + f ′′(

8θ2Ġ

9
− 6GĠ

2θ2
− 4

3
θG̈)− 1

2θ
f − 2

3
θ − 4

3
θĠ2f ′′′}∆̇m

−(1 + wi){f ′′(θf ′ −G+
1

2
) + f ′′′(−3GĠ

2θ
− 2

3
θ2G̈+

2

9
θ3Ġ)

−2

3
θ2Ġ2f iv +

f ′′′

f ′′

(
9G

16θ2
+
θ2

6
+

1− 3w

2
ρm − f +Gf ′ − 2θ2Ġ2

3
f ′′′

)
}G

−(1 + wi)w

1 + w
(−θ2 +

9

4θ2
+ θ̇ +

(
1

2
− 9

2
w

)
ρm − f +Gf ′ − 2θ2Ġ2f ′′′

+f ′′(
10θ3Ġ

9
− 9GĠ

2θ
− 2θ2G̈))ε− (1 + wi)

4

9
θ3f ′′G +

(
wi − c2

si

)
θ̇∆i

m +
(
wi − c2

si

)
θ∆̇i

m

−(1 + wi)
w

1 + w
θε̇− wiθ̇εi − wiθε̇i − a(1 + wi)

(
c2
si −

2

3

)
θ52 Vi + c2

si52 ∆i
m + wi52 εi. (83)
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The second order evolution equations governing the propagation of entropy perturbations for
a general ε or Sij will be presented for radiation-dust systems.

7 Harmonic analysis

The harmonic decomposition technique is used in such a way that the evolution equations can
be converted into ordinary differential equations for each mode [19, 22, 25, 26, 27]. On an
almost FRW space-time, we consider the differential equation of the form

Ẍ + AdẊ + ArX = As(Y, Ẏ ), (84)

with Ad, Ar and As represent damping, restoring and source terms respectively. The separation
of variable technique for solving Eq. 84 can be applied such that X(~x) and Y (~x) depend on
spatial variable x only and X(t) and Y (t) depend on time variable t so that

X(~x, t) = X(~x).X(t), (85)

and
Y (~x, t) = Y (~x).Y (t). (86)

To make a summation over a wavenumber k, we use the eigenfunctions Qk so that

X =
∑
k

Xk(t)Qk(x) , (87)

Y =
∑
k

Y k(t)Qk(x) , (88)

where Qk are the eigenfunctions of the covariant Laplace-Beltrami operator such that

5̃Q = −k
2

a2
Q. (89)

The Laplace-Beltrami operator is covariantly constant, it means Q̇k(x) = 0 and k = 2πa
λ

is the
order of the harmonic, and k is wavelength. Applying the harmonic decomposition scheme, the
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first order total and component fluid equations can be represented as

∆̇k
m = −(1 + w)Zk + c2

sθ∆
k
m + wθεk , (90)

Żk =

(
−1

3
θ2 +

3

2
(w − 1) ρm −

1

2
f +

1

2
Gf ′ − 2

3
θ2G̈f ′′ +

2

9
θ3Ġf ′′ − 3

2θ
GĠf ′′ − 2

3
θ2Ġ2f ′′′

)(
c2
s

1 + w
∆k
m

)
+

c2
s

1 + w

k2

a2
∆k + {f ′′(θf ′ −G+

3Ġ

2θ
)− 3GĠf ′′′

2θ
− 3f ′′Ġ

2θ
− 2

3
θ2Ġ2f iv − 2

3
θ2G̈f ′′′

+
f ′′′

f ′′
(

9G

16θ2
+
θ2

6
+

1− 3w

2
ρm − f +Gf ′ − 2θ2Ġ2

3
f ′′′) +

1

2
f ′′ +

2

9
θ3Ġf ′′′}Gk

+

(
−1

3
θ2 − 1

2
(1 + 3w) ρm −

1

2
f +

1

2
Gf ′ − 2

3
θ2G̈f ′′ +

2

9
θ3Ġf ′′ − 3

2θ
GĠf ′′ − 2

3
θ2(Ġ)2f ′′′

)(
w

1 + w
εk
)

− w

1 + w
52 ε+ {4

9
θ3f ′′}Gk + { 9

4θ3
+

1− 3w

θ
ρm +

G

2θ
f ′ + f ′′(

2θ2Ġ

9
− 9GĠ

2θ2
)

− 1

2θ
f − 2

3
θ +

2

3
θ2Ġf ′′ +

3GĠf ′′

2θ2
− 4

3
θĠ2f ′′′ − 4

3
θG̈f ′′}Zk , (91)

Ġk = Gk +
c2
s

1 + w
Ġ∆k − wĠεk , (92)

Ġk = {3(1− 3w)

4

ρm
θ2f ′′

− c2
s

(1 + w)
G̈}∆k + {−θ

3
− 9

4

G

θ3
− 2

f ′′′Ġ

f ′′
}Gk + { 1

θ2f ′′
(

27

32θ2
+

3

2
f ′)

+
f ′′′

θ2f ′′

(
−27

32

G

θ2
− θ2

4
− 3(1− 3w)

4
ρm +

3

2
f − 3

2
Gf ′ + Ġ2θ2f ′′′

)
− 3

2θ
f ′ +

3

2θ2
G

− 9

4θ

3

Ġ− Ġ2f iv

f ′′
}Gk

+

[
1

θ2f ′′

(
− 27

8θ3
− 3(1− 3w)ρm

2θ
+

3

θ
f − 3

θ
Gf ′

)
− Ġ

3
+

27

4θ4
GĠ

]
Zk + G̈

w

(1 + w)
εk , (93)

∆̇i
k = −(1 + wi)Z

k +
(
wi − c2

si

)
θ∆k

i −
(

1 + wi
1 + w

c2
s

)
θ∆k − (1 + wi)

w

1 + w
θεk

−wiθεki + (1 + wi)
k2

a
V k
i , (94)

V̇ k
i =

(
c2
si −

1

3

)
θV k

i +
1

a(1 + w)

(
c2
s∆

k + wεk
)
− 1

a(1 + wi)

(
c2
si∆

k
i + wiε

k
i

)
, (95)

V̇ k
ij =

(
c2
si − c2

sj

)
θV k

i +

(
c2
sj −

1

3

)
θV k

ij −
(

c2
si

a(1 + wi)
−

c2
sj

a(1 + wi)

)
∆k
i (96)

− wi
a(1 + wi)

εki −
c2
sj

a
Skij +

wj
a(1 + wj)

εkj , (97)

Ṡkij =
k2

a2
V k
ij . (98)
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The harmonically decomposed set of second order equations for total fluid and component fluids
are given respectively as

∆̈k
m = −(−θ2 +

9

4θ2
− θ̇ +

(w2 + 2
3
w − 1

3
)

c2
s

ρm + (
1

2
− 9

2
w)ρm − f +Gf ′ − 2θ2G̈f ′′

+
8

9
θ3Ġf ′′ − 2θ2Ġ2f ′′′ + f ′′(

2θ3Ġ

9
− 9GĠ

2θ
))
(
c2
s∆

k
m

)
− { 9

4θ3
− (

2

3
+ c2

s)θ

+
1− 3w

θ
ρm +

G

2θ
f ′ + f ′′(

2θ2Ġ

9
− 9GĠ

2θ2
)− 1

2θ
f +

2

3
θ2Ġf ′′ +

3GĠf ′′

2θ2
− 4

3
θĠ2f ′′′

−4

3
θG̈f ′′}∆̇k

m − c2
s

k2

a2
∆k
m − (1 + w){f ′′

(
1

2
+ θf ′ −G+

3Ġ

2θ

)
− 3GĠf ′′′

2θ
− 3f ′′Ġ

2θ

−2

3
θ2Ġ2f iv − 2

3
θ2G̈f ′′′ +

f ′′′

f ′′

(
9G

16θ2
+
θ2

6
+

1− 3w

2
ρm − f +Gf ′ − 2θ2Ġ2

3
f ′′′

)

+
2

9
θ3Ġf ′′′}Gk − { 9

4θ2
− θ2 − θ̇ + (

1

2
− 9

2
w)ρm +Gf ′ + f ′′

(
10

9
θ3Ġ− 9

2θ
GĠ− 2θ2G̈

)
−2θ2Ġ2f ′′′}

(
wεk

)
+ wθε̇k − wk

2

a2
εk − (1 + w)

4

9
θ3f ′′Gk , (99)

G̈k = {− c2
sθĠ

3(1 + w)
+

27c2
s

4(1 + w)θ3
GĠ+

1

θ2f ′′
(
3(1− 3w)

4
ρm −

27

8θ2

c2
s

1 + w

−3(1− 3w)

2

c2
s

1 + w
ρm + 3

c2
s

1 + w
f − 3

c2
s

1 + w
Gf ′)}∆k

+{ 1

θ2f ′′

(
− 27

8(1 + w)θ3
− 3(1− 3w)

2(1 + w)θ
ρm +

3

(1 + w)θ
f − 3

(1 + w)θ
Gf ′

)
3c2
s − 1

3(1 + w)
Ġ+

27

4(1 + w)θ4
GĠ}∆̇k + {−θ

3
− 9

4

G

θ3
− 2Ġ

f ′′′

f ′′
}Gk

+{ 1

θ2f ′′

(
− 27

8θ2

w

1 + w
− 3(1− 3w)

2

w

1 + w
ρm +

3w

1 + w
f − 3w

1 + w
Gf ′

)
− wθĠ

3(1 + w)
+

27w

4(1 + w)θ3
GĠ+ G̈

w

(1 + w)
− wG̈}εk − wĠε̇k

+{ 1

θ2f ′′
(

27

32θ2
+

3

2
f ′)− 3

2θ
f ′ +

3

2θ2
G− 9

4θ

3

Ġ− Ġ2f iv

f ′′

+
f ′′′

θ2f ′′

(
−27

32

G

θ2
− θ2

4
− 3(1− 3w)

4
ρm +

3

2
f − 3

2
Gf ′ + Ġ2θ2f ′′′

)
}Gk , (100)

∆̈k
i = −(1 + wi)c

2
s

1 + w
(−θ2 +

9

4θ2
+ θ̇ + (

1

2
− 9

2
w)ρm − f +Gf ′ − 2θ2Ġ2f ′′′

−(1− 3w)(1 + w)

c2
s

ρm + f ′′(
10θ3Ġ

9
− 9GĠ

2θ
− 2θ2G̈))∆k

−(1 + wi)

1 + w
{ 9

4θ3
+ c2

sθ +
1− 3w

θ
ρm +

G

2θ
f ′ + f ′′(

8θ2Ġ

9
− 6GĠ

2θ2
− 4

3
θG̈)

− 1

2θ
f − 2

3
θ − 4

3
θĠ2f ′′′}∆̇k − (1 + wi){f ′′(θf ′ −G+

1

2
) + f ′′′(−3GĠ

2θ
− 2

3
θ2G̈+

2

9
θ3Ġ)

−2

3
θ2Ġ2f iv +

f ′′′

f ′′

(
9G

16θ2
+
θ2

6
+

1− 3w

2
ρm − f +Gf ′ − 2θ2Ġ2

3
f ′′′

)
}Gk

−(1 + wi)w

1 + w
(−θ2 +

9

4θ2
+ θ̇ +

(
1

2
− 9

2
w

)
ρm − f +Gf ′ − 2θ2Ġ2f ′′′

+f ′′(
10θ3Ġ

9
− 9GĠ

2θ
− 2θ2G̈))εk − (1 + wi){

4

9
θ3f ′′}Gk +

(
wi − c2

si

)
θ̇∆k

i +
(
wi − c2

si

)
θ∆̇k

i

−(1 + wi)
w

1 + w
θε̇k − wiθ̇εki − wiθε̇ki + (1 + wi)

(
c2
si −

2

3

)
θ
k2

a
Vi − c2

si

k2

a2
∆k
i − wi

k2

a2
εki .(101)
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For a two component fluid, the entropy and velocity perturbation equations are given by

S̈kij =
k2

a2
V̇ k
ij −

1

3
θ
k2

a2
V k
ij , (102)

V̈ k
ij =

(
c2
si − c2

sj

)
θ̇V k

i +
(
c2
si − c2

sj

)
θV̇ k

i +

(
c2
sj −

1

3

)
θ̇V k

ij +

(
c2
sj −

1

3

)
θV̇ k

ij

−
(
c2
si − c2

sj

a(1 + wi)

)
∆̇k
i +

(
c2
si − c2

sj

3a(1 + wi)

)
θ∆k

i −
wi

a(1 + wi)
ε̇ki +

wi
3a(1 + wi)

θεki

−
c2
sj

a
Ṡkij +

c2
sj

3a
θSkij +

wj
a(1 + wj)

ε̇kj −
wj

3a(1 + wj)
θεkj . (103)

8 Perturbations in a radiation-dust universe

8.1 Basics of the radiation-dust mixture

We need to reduce the derived perturbation equations for a general multifluid system, for an
application of the equations for a cosmological medium. We consider a Universe filled with a
non interacting radiation and dust together with Gauss-Bonnet fluid, the three form of the fluid
we are considering. We also assume a flat homogeneous and isotropic Universe as a background
(FRW with K = 0). The evolution equation for radiation energy density ρr and dust energy
density ρd as

ρ̇r = −4

3
θρr (104)

and
ρ̇d = −θρd (105)

with r and d represent radiation and dust respectively. The equation of state parameter for
dust is considered to be wd = 0 and that of radiation is wr = 1

3
. With this in mind, the

equation of state parameter of the total matter fluid is given as

w =
pm
ρm

=
ρr

3 (ρd + ρr)
. (106)

The speed of sound in this total matter fluid is given as

c2
s =

ṗm
ρ̇m

=
4ρr

3 (3ρd + 4ρr)
. (107)

Define another parameter conecting two speeds of sound c2
sd and c2

sr as

c2
z =

1

h

(
hrc

2
sd + hdc

2
sr

)
=

ρd
3ρd + 4ρr

, (108)

∆m =
ρd

ρd + ρr
∆d +

ρr
ρd + ρr

∆r , (109)

∆̇m =
wθρd
ρd + ρr

∆d −
wθρd
ρd + ρr

∆r +
ρd

ρd + ρr
∆̇d + 3w∆̇r , (110)

Sdr =
ρd
hd

∆d −
ρr
hr

∆r = ∆d −
3

4
∆r , (111)

Ṡdr = ∆̇d −
3

4
∆̇r . (112)
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All the above defined parameters Eq. 104 through to Eq. 112 help during the analysis of
dust and radiation doninated universe. We can confine our discussions to polynomial f(G)
model and look for solutions in the short wavelength and long wavelength approximations for
perturbations deep in the radiation and dust dominated epochs [2, 51]. In f(G) gravity, the
expressions for the expansion, the effective matter energy density are given respectively as
[13, 18]

θ =
2m

(1 + w)t
, (113)

ρm =

(
3

4

)1−m [
4m2 − 3m(1 + w)

(1 + w)2t2

]m−1
4m3 − 2m(m− 1) (2m(3w + 5)− 3(1 + w))

(1 + w)2t2
.(114)

Start with Eq. 59,

pεa =
∑
i

piε
i
a +

1

2

∑
ij

hihj
h

(
c2
si − c2

sj

)
Sija , (115)

for a perfect fluid, εia = 0 and consider a mixture of dust-radiation, we have

pεa =
hdhr
h

(
c2
sd − c2

sr

)
Sdra , (116)

using h = ρ+ p, hi = ρi + pi and pd = 0, pr = 1
3
ρr, we have

pεa =
4

3

(
ρdρr

3ρd+4ρr
3

)(
c2
sd − c2

sr

)
Sdra , (117)

using c2
sd = 0 and c2

sr = 1
3
, we have

pεa = − 4ρdρr
3(3ρd + 4ρr)

Sdra , (118)

using p = 1
3
ρr, we have

εa = − 4ρd
3ρd + 4ρr

Sdra . (119)

Eq. 119 represents the entropy of the system. Its scalar equation becomes

ε = − 4ρd
3ρd + 4ρr

Sdr. (120)

It’s harmonic decomposition gives

εk = − 4ρd
3ρd + 4ρr

Skdr. (121)

The evolution equation for the entropy is thus

ε̇ = − 16θρdρr
3(3ρd + 4ρr)2

Sdr −
4ρd

3ρd + 4ρr
Ṡdr (122)

and its second order equation is presented as

ε̈ =
8θρr

3(3ρd + 4ρr)
ε̇+

(
4ρrθ̇

3(3ρd + 4ρr)
− 4θ2ρdρr

3(3ρd + 4ρr)2

(
1 + 4

ρr
ρd

))
ε− 4ρd

3ρd + 4ρr
S̈dr.

(123)
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8.2 Total fluid equations

We use the defined relations Eq. 104 through to Eq. 112 and applying the general total fluid
second order equations to the radiation-dust mixture, to have

∆̈k
m = (θ2 − 9

4θ2
+ θ̇ −

(w2 + 2
3
w − 1

3
)

c2
s

ρm − (
1

2
− 9

2
w)ρm + f −Gf ′ + 2θ2Ġ2f ′′′

+f ′′(
2θ3Ġ

9
+

9GĠ

2θ
− 2θ2G̈)− k2

a2
)
(
c2
s∆

k
m

)
− { 9

4θ3
− (

2

3
+ c2

s)θ +
1− 3w

θ
ρm +

G

2θ
f ′

+f ′′(
8θ2Ġ

9
− 6GĠ

2θ2
− 4

3
θG̈)− 1

2θ
f − 4

3
θĠ2f ′′′}∆̇k

m +
4wc2

z

3
{ 9

4θ2
− θ2 − θ̇ + (

1

2
− 9

2
w)ρm +Gf ′

+f ′′
(

10

9
θ3Ġ− 9

2θ
GĠ− 2θ2G̈

)
− 2θ2Ġ2f ′′′ − 3θ2c2

s +
k2

a2
}Skdr − 4wθc2

zṠ
k
dr

−(1 + w){f ′′
(

1

2
+ θf ′ −G

)
− (

3GĠ

2θ
+

2θ2G̈

3
− 2θ3Ġ

9
)f ′′′ − 2

3
θ2Ġ2f iv

+
f ′′′

f ′′

(
9G

16θ2
+
θ2

6
+

1− 3w

2
ρm − f +Gf ′ − 2θ2Ġ2

3
f ′′′

)
}Gk − (1 + w)

4

9
θ3f ′′Ġk , (124)

G̈ = { 9c2
s

(1 + w)θ3
GĠ+

1

θ2f ′′
(
3(1− 3w)

4
ρm −

27

8θ2

c2
s

1 + w
− 3(1− 3w)

2

c2
s

1 + w
ρm

+3
c2
s

1 + w
f − 3

c2
s

1 + w
Gf ′) +

2c2
sĠ

2f ′′′

(1 + w)f ′′
}∆m

+{ 1

θ2f ′′

(
− 27

8(1 + w)θ3
− 3(1− 3w)

2(1 + w)θ
ρm +

3

(1 + w)θ
f − 3

(1 + w)θ
Gf ′

)
3c2
s − 1

3(1 + w)
Ġ

+
27

4(1 + w)θ4
GĠ}∆̇m + {−θ

3
− 9

4

G

θ3
− 2Ġ

f ′′′

f ′′
}Ġk

−4c2
z{

1

θ2f ′′

(
− 27

8θ2

w

1 + w
− 3(1− 3w)

2

w

1 + w
ρm +

3w

1 + w
f − 3w

1 + w
Gf ′

)
− wθĠ

3(1 + w)
+

27w

4(1 + w)θ3
GĠ+ G̈

w

(1 + w)
− wG̈− wθĠc2

s}Skdr − 4wĠc2
zṠ

k
dr

+{ 1

θ2f ′′
(

27

32θ2
+

3

2
f ′)− 3

2θ
f ′ +

3

2θ2
G− 9

4θ

3

Ġ− Ġ2f iv

f ′′

+
f ′′′

θ2f ′′

(
−27

32

G

θ2
− θ2

4
− 3(1− 3w)

4
ρm +

3

2
f − 3

2
Gf ′ + Ġ2θ2f ′′′

)
}G , (125)

S̈kij = (c2
si −

2

3
)θṠkij − c2

sj

k2

a2
Skij −

(
c2
si

1 + wi
−

c2
sj

1 + wi

)
k2

a2
∆k
m , (126)

where ∆m and Sdr are given by ∆m = ρd∆d+ρr∆r

ρd+ρr
, Sdr = ∆d − 3

4
∆r.
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8.3 Component equations

The energy density perturbations equation for the component fluids is presented as

∆̈k
i = −(1 + wi)c

2
s

1 + w
(−θ2 +

9

4θ2
+ θ̇ + (

1

2
− 9

2
w)ρm − f +Gf ′ − 2θ2Ġ2f ′′′

−(1− 3w)(1 + w)

c2
s

ρm + f ′′(
10θ3Ġ

9
− 9GĠ

2θ
− 2θ2G̈))∆k

m

−(1 + wi)

1 + w
{ 9

4θ3
+ c2

sθ +
1− 3w

θ
ρm +

G

2θ
f ′ + f ′′(

8θ2Ġ

9

−6GĠ

2θ2
− 4

3
θG̈)− 1

2θ
f − 2

3
θ − 4

3
θĠ2f ′′′}∆̇k

m

−(1 + wi){f ′′(θf ′ −G+
1

2
) + f ′′′(−3GĠ

2θ
− 2

3
θ2G̈+

2

9
θ3Ġ)− 2

3
θ2Ġ2f iv

+
f ′′′

f ′′

(
9G

16θ2
+
θ2

6
+

1− 3w

2
ρm − f +Gf ′ − 2θ2Ġ2

3
f ′′′

)
}Gk

−(1 + wi)w

1 + w
(−θ2 +

9

4θ2
+ θ̇ +

(
1

2
− 9

2
w

)
ρm − f +Gf ′ − 2θ2Ġ2f ′′′

+f ′′(
10θ3Ġ

9
− 9GĠ

2θ
− 2θ2G̈))εk − (1 + wi){

4

9
θ3f ′′}Gk

+
(
wi − c2

si

)
θ̇∆k

i +
(
wi − c2

si

)
θ∆̇k

i − (1 + wi)
w

1 + w
θε̇k

−wiθ̇εki − wiθε̇ki + (1 + wi)

(
c2
si −

2

3

)
θ
k2

a
Vi − c2

si

k2

a2
∆k
i − wi

k2

a2
εki . (127)

By considering the fluid to be perfect (εi = 0) and setting the direction of the unit velocity
vector Vi to be in the same directtion as that of total fluid, implies vanishing relative velocity
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Vi = 0,and setting i as radiation and c2
si = 1

3
, we have

∆̈k
r = { wθ

1 + w

(
−3c2

s + 4G̈f ′′ + 4Ġ2f ′′′ +
2

3
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θ2Ġ2f iv+

f ′′′

f ′′

(
9G

16θ2
+
θ2

6
+

1− 3w

2
ρm − f +Gf ′ − 2θ2Ġ2
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Similary, the dust component is presented as
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θ2Ġ2f iv+

f ′′′

f ′′

(
9G

16θ2
+
θ2

6
+

1− 3w

2
ρm − f +Gf ′ − 2θ2Ġ2
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8.4 Short wavelength solutions

In this section, we study the evolution of the short wavelength modes, it means large values
of the wave number k for a radiation and dust mixture. The general results will then be
considered for polynomial f(G) model and we will use quasi-static approximation for the matter
perturbations for both radiation and dust dominated epochs. In that approximation, widely
used in the literature [20, 26, 52], all the time derivative terms for the Gauss-Bonnet term and
its momentum are discarded, and only those including energy density perturbations ∆m are
kept [27].

8.4.1 Perturbations in the radiation-dominated epoch

Let us now look at the case where the characteristic size of the fluid inhomogeneities is much
less than the Jeans length for the radiation fluid but is still larger than the mean free path of
the photon, i.e., λ� λH � λJ . We can neglect the interaction between the component fluids
and assume that the radiation energy density can be taken as homogeneous, meaning ∆r ≈ 0.
Our equations become
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Ṡkdr =
k2

a2
V k
dr . (136)
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The matter energy density and entropy Sdr are given by ∆m = ρd∆d

ρd+ρr
and Sdr = ∆d. For

∆r � ∆d and using c2
sd = 0 and from the homogeneity of radiation energy density as a

background, we have

c2
sρm∆k

m + pεk =
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3
ρr∆

k
r ≈ 0 , (137)
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a
V k
d , (138)

Ġk = Gk. (139)
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dr = −1
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d , (142)

Ṡkdr =
k2

a2
V k
dr. (143)

At this stage, we can set the direction of the unit velocity vector uda of the dust to be in the
same direction as that of the total matter fluid. This implies that we have a vanishing relative
velocity V d

a . Thus we have

V k
d = 0 , (144)
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d = −Zk , (145)
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arranging terms and simplifying to have
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GĠf ′′ +

2

3
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θ3Ġf ′′′

+
f ′′′

f ′′

(
9G

16θ2
+
θ2

6
− f +Gf ′ − 2θ2Ġ2
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so that the second-order equation in ∆k
d becomes
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Since we are dealing with the epoch where radiation dominates over dust, we also assume that
the energy density of radiation is much larger than that of dust, that is ρd � ρr , so that the
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leading equation becomes
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2θ
− 2

3
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We approximate once more that the product of the dust energy density perturbation ∆k
d and

dust energy density ρd are small enough so that we neglect
ρd∆k

d

ρr
over the other terms. Thus,

we have
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The evolution equation for the momentum of Gauss-Bonnet parameter is presented as
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Using
Ġk = Gk,

we have
G̈k = Ġk, (152)
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so that
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Using quasi-static approximation, we have
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For the case f(G) = G, we have, [18]
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and
G = 0. (156)

These equations are similar to the ones obtained in [18, 27] for the GR limits perturbation
equations. The equations Eq. 154 and Eq. 155 are time dependent and need to be transformed
into redshift space in order to be able to get numerical solutions and to make comparison with
cosmological observation. We use

a =
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, (157)

to get the redshift transformed equations and presented as
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where prime stands for derivative with respect to redshift and
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H =
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Equation eq. 159 solved analytically and the solution is presented as

∆(z) = C1(1 + z)α1 + C2(1 + z)α2 , (163)

where α1 = 1 +
√

7
2

and α2 = 1−
√

7
2

. The integration constants C1 and C2 can be determined
by imposing the initial conditions at z = 0. At z = 0, we have

∆(z = 0) = C1 + C2. (164)

∆′(z) = C1α1(1 + z)α1−1 + C2α2(1 + z)α2−1, (165)

∆′(z = 0) = C1α1 + C2α2, (166)

Solving simultaneously, we have
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For dust dominated Universe, w = 0 and for radiation dominated Universe, w = 1
3
. Equation eq.

158 gives Bessel hypergeometrical solutions, we prefer to present them numerically. We consider
f(G) model: polynomial (eq. 28), to find numerical solutions for the perturabtion equations.
Numerical solutions of Eq. 158 and Eq. 159 are presented in Figure 1, the considered f(G)
model and for the case f(G) = G.

8.4.2 Perturbations in a dust-dominated epoch

The energy density of radiation is much smaller than energy density of dust in this dust domi-
nated epoch, that is, ρr � ρd. We also assume that the perturbations due to radiation energy
density are small enough compared to the perturbations generated from dust, that is ∆r � ∆d

. We keep the same assumption as we did in radiation dominated epoch of assuming ∆r ≈ 0 .
With the above assumption, the evolution equations governing this system are
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2θ2
)− 1

2θ
f − 2

3
θ +

2

3
θ2Ġf ′′ +
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(170)
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(a) Numerical solutions of Eq. 158 using polynomial
f(G) model (eq.28)

(b) Numerical solutions of Eq. 159 for
the case f(G) = G

Figure 1: Plot of energy density perturbations ∆(z) versus redshift z of Eq. 158 and Eq. 159
for short wavelength modes in a radiation dominated Universe using different values of m.
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and

Ṡkdr =
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V k
dr. (175)
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The second order evolution equation in energy density and Gauss-Bonnet parameter perturba-
tions are given by
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θĠ2f ′′′−4

3
θG̈f ′′}∆̇k

d,

(176)

and
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(177)

By applying the quasi-static approximation, it meas Ġ and G̈ is set to be equal to zero, we
have

∆̈k
d = {1

θ
ρd +

G

2θ
f ′ + f ′′(

9

4θ3
f ′′ +

8θ2Ġ
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2θ
− 2

3
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(178)

For the case f(G) = G, we have [18, 25, 27]

∆̈k
d + (−ρd

θ
+

2

3
θ)∆̇k

d − ρd∆k
d = 0. (179)

Using the same transformation scheme as in a the radiation dominated Universe (Eq. 158 and
Eq. 160 through to Eq. 162), Eq. 178 and Eq. 180 transformed as
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(180)
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and

∆′′d −
2

1 + z
∆′d −

3

(1 + z)2
∆d = 0. (181)

This equation solved analytically and admit the solution

∆(z) = C3(1 + z)β1 + C4(1 + z)β2 , (182)

with β1 = 3
2

+
√

21
2

and β2 = 3
2
−
√

21
2

. The integration constants C3 and C4 can be determined
by imposing the initial conditions at z = 0. At z = 0, we have

∆(z = 0) = C1 + C2. (183)

∆′(z) = C3β1(1 + z)β1−1 + C4β2(1 + z)β2−1, (184)

∆′(z = 0) = C3β1 + C4β2, (185)

Solving simultaneously, we have

C3 =
β2∆(z = 0)−∆′(z = 0)

β2 − β1

, (186)

and

C4 =
∆′(z = 0)− β1∆(z = 0)

β2 − β1

. (187)

Numerical solutions of Eq. 180 and Eq. 181 are presented in Figure 2 for polynomial model
and for the case f(G) = G.

(a) Numerical solutions of Eq. 180 using
polynomial f(G) model (eq. 28)

(b) Numerical solutions of Eq. 181 for
the case f(G) = G

Figure 2: Plot of energy density perturbations ∆(z) versus redshift z of Eq. 180 and Eq. 181
for short wavelength modes in a dust dominated Universe using different values of m.

8.5 Long wavelength solutions

In this section we analyze the evolution of energy density and Gauss-Bonnet parameter per-
turbations in the long wavelength limit. In this limit the wavenumber k is so small that
λ = 2πa

k
� λH , it means, k2

a2H2 � 1. All Laplacian terms can therefore be neglected. We focus
our interests on radiation-dominated epoch where the interaction between component fluids is
neglected.
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8.5.1 Perturbations in the radiation-dominated epoch

In this context of radiation dominated over dust component, we assume the homogeneity of
radiation energy density with flat universe K = 0. These assumption results in writing ∆r ≈ 0.
Therefore our leading equations become

∆̇k
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3
θ∆k

m, (188)
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θ2Ġ2f ′′′

)(
εk
)

+{4

9
θ3f ′′}Gk+{ 9

4θ3
+
G

2θ
f ′+f ′′(

8θ2Ġ
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(189)
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V̇ k
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, (192)

V̇ k
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(193)

for a radiation-dust mixture, the equation for the evolution of entropy perturbations is given
by

Ṡkdr = 0. (194)

We use w = csr = 1
3

and csd = 0. Knowing that ∆k
m = ρd

ρd+ρr
∆k
d + ρr

ρd+ρr
∆d
r and for ∆k

r ≈ 0, we
have
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∆k
m = ρd

ρd+ρr
∆k
d, S

k
dr = ∆k

d, Ṡ
k
dr = ∆̇k

d and εk = − 3ρd
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Skdr so that the leading equations become
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θ3Ġf ′′ − 9

8θ
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9
− 6GĠ
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ρd
3ρd + 4ρr

∆k
d , (197)
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f ′′
}Gk + { 1

θ2f ′′
(

27

32θ2
+

3

2
f ′)

+
f ′′′

θ2f ′′

(
−27

32

G

θ2
− θ2

4
+

3

2
f − 3

2
Gf ′ + Ġ2θ2f ′′′
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Ṡkdr = 0. (201)

Assume that the energy density of radiation is much larger than that of dust, that is ρd � ρr
, and that the product of the dust energy density perturbation ∆k

d and dust energy density ρd
are small enough so that we neglect ρd∆

k
dρr, we have
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Ġk = Gk, (204)
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Ṡkdr = 0. (208)

The second order equation is given as
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9
−6GĠ
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Using ∆̇k
d = −Zk and Ġk = Gk, we have
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9
− 6GĠ
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For the case f(G) = G, we have[18, 25]
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Transforming Eq. 211 into redshift, we get
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Using ∆̇k
d = −Zk, Ġk = Gk and Ṡkdr = ∆̇k

d = 0, we have
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The redshift transformation of Eq. 213 and Eq. 216 are presented as
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and [18]

∆′′d −
3

1 + z
∆′d = 0. (218)

Analytical solution is given as
∆(z) = C5 + C6(1 + z)4. (219)

The integration constants C5 and C6 can be determined by imposing the initial conditions at
z = 0. At z = 0, we have

∆(z = 0) = C5 + C6. (220)

∆′(z) = 4C6(1 + z)3, (221)

∆′(z = 0) = 4C6. (222)

Solving simultaneously, we have

C5 =
4∆(z = 0)−∆′(z = 0)

4
, (223)

and

C6 =
∆′(z = 0)

4
. (224)

The numerical solutions of Eq. 213, Eq. 217 and Eq. 218 are presented in Figure 3 for
polynomial f(G) model and for the case f(G) = G.
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(a) Numerical solutions of Eq. 213 and
Eq. 217 using polynomial f(G) model
(eq. 28)

(b) Numerical solutions of Eq. 218 for
the case f(G) = G

Figure 3: Plot of energy density perturbations ∆(z) versus redshift z of Eq. 213, Eq. 217 and
Eq. 218 for long wavelength modes in a radiation dominated Universe using different values of
m.

8.5.2 Perturbations in a dust-dominated epoch

The energy density of radiation is much smaller than energy density of dust in this dust domi-
nated epoch. that is, ρr � ρd.

We also assume that the perturbations due to radiation energy density are small enough
compared to the perturbations generated from dust, that is ∆r � ∆d . Proceeding in a similar
fashion for the dust dominated, long wavelength regime, the second order evolution equations
are given as
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}Ġk + { 1

θ2f ′′
(

27

32θ2
+

3

2
f ′)

+
f ′′′

θ2f ′′

(
−27

32

G

θ2
− θ2

4
− 3

4
ρd +

3

2
f − 3

2
Gf ′ + Ġ2θ2f ′′′
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The transformed redshift of Eq. 225 and Eq. 226 are given as
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(1 + z)2H2G ′′ = 3
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}G , (228)

∆′′d −
2

1 + z
∆′d −

3

(1 + z)2
∆d = 0 , (229)

which admit the solution
∆(z) = C7(1 + z)σ1 + C8(1 + z)σ2 , (230)

with σ1 = 3
2

+
√

21
2

and σ2 = 3
2
−
√

21
2

. The integration constants C7 and C8 can be determined
by imposing the initial conditions at z = 0. At z = 0, we have

∆(z = 0) = C7 + C8. (231)

∆′(z) = C7σ1(1 + z)σ1−1 + C8σ2(1 + z)σ2−1, (232)

∆′(z = 0) = C7σ1 + C8σ2, (233)

Solving simultaneously, we have

C7 =
σ2∆(z = 0)−∆′(z = 0)

σ2 − σ1

, (234)

and

C8 =
∆′(z = 0)− σ1∆(z = 0)

σ2 − σ1

. (235)

The numerical solutions of Eq. 227, Eq. 228 and Eq. 229 are presented in the Figure 4 for
polynomial (Eq. 28) f(G) model and for the case f(G) = G.

It can be seen that Eq. 217 differs from Eq. 158, Eq. 180, Eq. 213, Eq. 227 and Eq. 228
since the Gauss-Bonnet fluid perturbations decouple with the matter energy density.
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(a) Numerical solutions of Eq. 227 and
Eq. 228 using polynomial f(G) model
(eq. 28)

(b) Numerical solutions of Eq. 229 for
the case f(G) = G

Figure 4: Plot of energy density perturbations ∆(z) versus redshift z of Eq. 227, Eq. 228 and
Eq. 229 for long wavelength modes in a dust dominated Universe using different values of m.

9 Discussion and Conclusion

9.1 Discussion

We have developed a theory of cosmological density perturbations in a multifluid cosmologi-
cal medium using 1 + 3 covariant formalism with the consideration of f(G) theory of gravity.
We defined vector gradient variables with respect to a FRW background which characterize
the time evolution of density and velocity perturbations. We derived a complete set of linear
evolution equations for both the total fluid and its components. Using different techniques
namely: scalar decomposition, harmonic decomposition and redshift transformation, we anal-
ysed the evolution of energy density perturbations in both short and long wavelength modes
for radiation-Gauss-Bonnet and dust-Gauss-Bonnet fluid systems. We then considered the case
where f(G) = G and polynomial f(G) model to get numerical results. The numerical results
in short-wavelength modes for both radiation-Gauss-Bonnet and dust-Gauss-Bonnet fluids are
presented in Figure. 1(a) and Figure .2 (a) respectively and Figure. 1(b) and Figure .2 (b) for
the case f(G) = G. The ones in long-wavelength modes are presented in Figure. 3(a) through
to Figure .4(a) for radiation-Gauss-Bonnet and dust-Gauss-Bonnet systems and Figure. 3(b)
through to Figure .4(b) for the case f(G) = G. From the plots, for the case f(G) = G, we
depicted the contribution of radiation and dust component of the Universe for the perturba-
tions of matter energy density where the energy density perturbations decay with redshift for
all Figures: Fig. 1(b), through to Fig. 4(b). For the considered polynomial model, we observed
that the energy density perturabtions decay with increase in redshift for all the Figures: Fig.
1(a), through to Fig. 4(a). We assumed the initial conditions as ∆(zin) = 10−6 and ∆′(zin) = 0
[53] for each mode k to deal with the growth of matter fluctuations. The evolution of mat-
ter perturbations is scale invariant at all scale in the presence of Gauss-Bonnet term and the
growth rate of matter energy density perturbations can be compatible with observations even in
the consideration of the contribution from the Gauss-Bonnet interaction. Some of the specific
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highlights of this work include:

• The equations obtained in this paper can be applied in different situations of cosmological
interest because they are completely general in terms of fluid properties and interactions
and they give a covariant and gauge invariant description of properties of perturbed FRW
Universe in f(G) theory of gravity.

• We investigated the evolution of the linearly perturbed equations. The equations Eq. 158
and Eq. 180 of short-wavelength modes and Eq. 213, Eq. 217, Eq. 227 and Eq. 228 of
long wavelength modes for the linear matter and Gauss-Bonnet fluid inhomogeneities and
Eq. 123 for entropy perturbations could be highlighted as one of the main results of this
paper since they enabled us to find several results for the evolution of the perturbations
in matter-Gauss-bonnet gravity.

• We considered only scalar perturbations rather than vector and tensor perturabtions
studied in [57]. In both dust and radiation dominated epochs, we have seen that energy
density perturbations are k independent and the long and short wavelength modes do not
depend on the speed of sound, a result differs in the ones obtained in [57].

• We have found that the velocity perturbations of the perfect fluid propagate with the
speed of sound c2

s = ṗ
ρ̇

in agreement with [57].

• The entropy perturbations of the perfect fluid completely decouple from energy density
and velocity perturbations for a perfect barotropic equation of state, a feature in agree-
ment with the ones obtained in [57].

• We have shown the ranges of m for which the energy density perturbations decay with
redshift for the polynomial f(G) model. We considered 1 ≤ m ≤ 1.80 for both short-and
long- wavelength modes. The consideration of different values of m was made basing on
the work done in [53, 54]. The current results show that even at the level of perturbations,
the Gauss-Bonnet fluid offers an alternative for the large scale structure formation. This is
because we can notice the decay of the energy density perturbations with redshift, which
implies that there is an increase in structure formation rate. This result is in agreement
with the astrophysical and cosmological observations and ΛCDM model [53, 54].

• The derived f(G) model shows that the non-linear G can drive the inflation in the early
epoch and describe the late time cosmic acceleration, a result similar to the one obtained
in for the considered f(R,G) models, with both R and G being non-linear. This result is
in agreement with the recent results by Plank [61, 62] and BICEP2 [60] collaborations.

9.2 Conclusion

In this work, we have presented a detailed analysis of cosmological perturbations in f(G)
gravity where the Universe is described by multi-component fluids with a general equation of
state parameter. We explored the numerical solutions of cosmological perturbation equations
in a multifluid cosmological medium in modified Gauss-Bonnet theory of gravity using maple
software. We applied the 1+3 covariant formalism to define gradient variables and we obtained
the linear evolution equations of the matter energy density and Gauss-Bonnet perturbations
for both total matter and the component fluid relative to the energy frame. We applied scalar
and harmonic decomposition methods to analyse the scalar perturbations of energy densities
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involved namely energy density contribution from matter and Gauss-Bonnet fluids. In order to
further analyse the perturbation equations, we applied redshift transformation method together
with quasi-static approximation to get a set of simplified equations and to be able to make
comparison with observations. We considered different systems such as radiation-Gauss-Bonnet
and dust-Gaus-Bonnet fluids in both short- and long-wavelength modes. We used polynomial
f(G) model and considered the case where f(G) = G to get numerical results of the perturbation
equations. In conclusion, since all the numerical results presented in Fig. 1(a) through to Fig.
4(a) and Fig. 1(b) through to Fig. 4(b) show the decay of energy density perturbations with
an increase in redshift, the formation of structures is enhanced in f(G) gravity specifically for
the model under consideration which is one of the characteristic of cosmic acceleration.
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