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Abstract
Purpose of Review  The introduction of MinION whole-genome sequencing technology greatly increased and simplified 
complete genome sequencing in various fields of science across the globe. Sequences have been generated from complex 
organisms to microorganisms and are stored in genome databases that are readily accessible by researchers. Various new 
software for genome analysis, along with upgrades to older software packages, are being generated. New protocols are also 
being validated that enable WGS technology to be rapidly and increasingly used for sequencing in field settings.
Recent Findings  MinION WGS technology has been implemented in developed countries due to its advantages: portability, 
real-time analysis, and lower cost compared to other sequencing technologies. While these same advantages are critical in 
developing countries, MinION WGS technology is still under-utilized in resource-limited settings.
Summary  In this review, we look at the applications, advantages, challenges, and opportunities of using MinION WGS in 
resource-limited settings.
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Introduction

The desire to understand human genetics led to a revolu-
tion in gene sequencing technologies [1]. As part of this 
sequencing revolution, Oxford Nanopore Technologies 
(ONT) invented the MinION whole-genome sequencer 
device (Fig. 1), which was released to the first commercial 
users in 2014 [2, 3]. MinION and similar sequencing tech-
nologies are classified as third-generation sequencers (TGS) 
because these technologies sequence single molecules of 
DNA and RNA directly, without a PCR amplification step 
[4]. The MinION has another added advantage over second-
generation sequencers—it can sequence long DNA molecule 

lengths [5]. In addition, the MinION sequencer is portable, 
weighing less than 100 g, and can be connected to laptop or 
benchtop computers via a USB port. Real-time data analysis 
is obtained for both the number of sequence reads and the 
distribution of DNA lengths; thus, the system requires lim-
ited computing infrastructure [6, 7]. The technology uses a 
“flow cell” that consists of up to 2048 individual nanopores 
that are monitored in 512 separate groups by a microchip 
known as the application-specific integrated circuit (ASIC) 
[2, 8]. The device is equipped with specialized software, 
known as MinKWON, that is run on the computer to which 
the device is connected. The MinKWON software performs 
several functions including data acquisition, real-time analy-
sis and feedback, data streaming (including run parameter 
selection), and sample identification and tracking. These 
processes allow the user to ensure the platform chemis-
try performs well while sequencing and to make real-time 
adjustments [8]. The read length of MinION WGS continues 
to be improved, with entire megabase chromosomes able 
to be sequenced as a single molecule, with each flow cell 
capable of generating hundreds of thousands of reads [9].

With the continued development of sequencing chemistry 
and software improvements, the capacity of MinION WGS has 
improved. MinION WGS has lower base call accuracy during the 
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sequencing reaction than first- (Sanger sequencing) and second-
generation (short-read WGS) sequencing [11, 12]. However, 
various software updates that bioinformatically account for base 
miscalls have improved the MinION WGS sequencing accuracy 
to 90% [9]. Many new software packages are being developed and 
validated [13, 14] that, combined with enhanced chemistry [15], 
are anticipated to improve the technology further.

One unique aspect of the ONT MinION sequencing plat-
form is the emphasis on a low-cost, user-friendly system that 
allows for easy library preparation and consistent sequenc-
ing results [16]. This user-friendly focus reduces intellec-
tual barriers for use, allowing researchers to readily perform 
sequencing without the support of core sequencing facilities. 
The technology is less expensive and more rapid compared to 
previous sequencing technologies [17]. Thus, the ONT Min-
ION sequencing device has a wide range of applications that 
include de novo genome assembly [18] and classifications 
[19], identification and differentiation of bacteria and viruses 
[20], metagenomic analysis of microbes [21–24], real-time 
diagnostics [25, 26], on-site sequencing in extreme environ-
ments [16], and diagnosis of fungal pathogens [27–30].

This review will focus on how MinION WGS is utilized in 
resource-limited settings in the field of microbiology, the opportu-
nities this technology creates in resource-limited settings, and the 
challenges that need to be overcome to obtain sequencing results.

Principle of MinION WGS

The primary component of the MinION WGS is the 
membrane that contains nanopores (microscopic pores) 
to which current is applied (Fig. 1) [31]. The nanopore 

allows a single DNA or RNA molecule to pass through 
the membrane in the presence of an electrical current and 
appropriate buffer solutions. When the DNA/RNA passes 
through the nanopore, each nucleotide influences the cur-
rent in a different way, which is detected by a sensor. These 
current changes are then decoded by the computer soft-
ware, producing a sequence for the DNA/RNA strand as 
it passes through the pore [2, 8, 14]. Because sequencing 
occurs continuously for each DNA/RNA strand that passes 
through a pore, the only limitation to the length of DNA/
RNA that can be analyzed is the user’s ability to obtain 
intact, long fragments of DNA from their cell of interest.

Why Sequence in Resource‑Limited 
Settings?

The sequencing needs in resource-limited settings are similar 
to other regions. For example, in the context of disease epi-
demiology, sequencing data generated on-site can be used in 
surveillance investigations to monitor for new isolates, the 
prevalence of existing isolates, and drug resistance during out-
breaks [32, 33•, 34]. The ability to rapidly analyze sequencing 
information in order to adapt healthcare practices and best 
utilize limited resources is perhaps even more important in 
resource-limited settings than in wealthy countries where 
abundant healthcare and state-of-the-art treatments are readily 
available. In resource-limited settings, sequencing technology 
needs to be inexpensive and accessible to be useful.

The small size of the MinION WGS device and its accesso-
ries is advantageous in countries with limited resources where 

Fig. 1   Schematic diagram indi-
cating the composition of the 
MinION device, flow cell, nano-
pore, real-time computer access, 
and process management. Green 
is active, blue is inactive, and 
yellow are recovery pores on the 
nanopore membrane. The figure 
was designed using biorender 
[10]
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laboratories are small. There is no need for lab expansion or 
modifications before installation [35, 36]. Importantly, results 
can be obtained within one to a few hours, making the MinION 
device suitable for diagnostic purposes [36–39] and therefore 
providing real-time analysis of results. The use of battery power 
to overcome lack of electricity or routine electricity shortages 
is also easy due to the minimal power requirements when com-
pared to other sequencers [40••]. While training is still required, 
the MinION device is user-accessible and requires less overall 
training and less technical expertise, making it accessible to a 
general user [36]. In addition, the initial equipment and reagent 
costs necessary to perform sequencing is substantially lower 
than other sequencing technologies [41, 42] and the sequencing 
cost per sample is also significantly lower. For example, esti-
mated sequencing costs for MinION versus Illumina sequencers 
are £61.17 and £205.03, respectively [40••]. Furthermore, the 
MinION device comes with free software for the analysis of 
sequence data [36]. Although MinION results still have biases, 
technology upgrades are in place to ensure reliability and high-
quality results [37]. Importantly, the use of MinION removes the 
challenges associated with shipping samples. Sample degrada-
tion and loss that would be encountered during shipping are 
reduced since the samples are either processed in the field or an 
on-site lab [37]. Expenses encountered in sending samples to 
established countries with sequencing facilities are minimized, 
as well as challenges associated with transport of highly infec-
tious samples [37].

Because of advances revolutionized by the relatively 
cheap MinION sequencing technology compared to other 
infrastructure-intensive sequencing platforms, it is now pos-
sible to envision the research potential of employing Min-
ION sequencing in resource-limited settings [40••]. For 
example, due to the portability of MinION sequencers [35], 
they were critical during the Ebola outbreak in Northern 
Africa in 2016 [39], given that Ebola outbreaks typically 
occur in locations where it is difficult to utilize other more 
bulky sequencers. Furthermore, the ability to perform on-
site sequencing solved the challenge of transporting highly 
infectious Ebola samples to countries with established 
sequencing facilities. In addition, MinION sequencing is an 
excellent tool for epidemiological surveillance in resource-
limited settings within and outside Africa for monitoring 
of disease outbreaks and drug resistance surveillance [32, 
39, 43•, 44•]. MinION sequencers are able to detect mixed 
infections in a sample, which gives it an added advantage 
when used for diagnostic purposes [37].

Beyond disease monitoring, MinION sequencing is also used 
for population genetic studies in humans, animals, agriculture, 
and veterinary science under resource-limited conditions [36, 
38, 40••]. Most human genome sequencing performed to date 
has occurred in wealthy societies [45–47]. Yet analysis of human 
genomes from different peoples is needed to identify the entirety 
of genetic diseases in humans [48–52]. The ability to transition 

from research of sequence data to clinical diagnosis in patients 
is a necessity across the globe [53]. The same concept applies to 
plants and microbes [54–56]. Sequencing technologies are used 
in a wide variety of biological applications ranging from agron-
omy, biochemistry, forestry, genetics, horticulture, pathology, 
and systematics [57, 58]. Importantly, Boykin et al. [38] were 
able to detect latent viruses in crop materials, gaining an added 
advantage over other sequencing technologies. Virus-indexing 
for the safe movement of germplasm can limit the movement of 
infected plant materials across the globe, resulting in improved 
international trade [37].

While MinION WGS technology is only just begin-
ning to be implemented in resource-limited settings, the 
potential to revolutionize research in these settings and 
gain understanding of global diversity is becoming read-
ily apparent. In Tanzania, MinION WGS was used in the 
study of Peste des petits ruminants virus which causes a 
contiguous disease in wild and small domestic ruminants 
and the researchers in this study were able to generate 
results within 4 h of sample collection [36]. In another 
study conducted in Uganda, Kenya, and Tanzania to 
identify viruses that cause disease in crops, results were 
obtained using MinION technology in 3 h compared to 
the typical 6 months. This study also demonstrated the 
use of PDQeX DNA purification technology, which does 
not require extensive infrastructure, highlighting the use 
of MinION sequencing in field activities [38]. In West 
Africa, Quick et al. demonstrated MinION WGS results 
could be obtained within 15–60 min of Ebola sample col-
lection, showing its utility in surveillance and epidemio-
logical investigations [39], while in DRC, another study 
considered genetic variabilities in order to predict future 
outbreaks of Ebola in West Africa [59•]. In a collabora-
tive study conducted in Kenya and other countries outside 
Africa, the limitations of direct MinION sequencing for 
rabies virus were also highlighted, with known positive 
samples only detected by MinION when Ct values ranging 
from 14.4–27.1 showing PCR is more sensitive than Min-
ION sequencing in the diagnosis of rabies [60••], while in 
another collaborative study in Kenya, Tanzania, the Phil-
ippines, and the UK about rabies, a consensus coverage 
for whole genome in all study sites was ≥ 20 × which can 
be used to handle outbreaks [40••]. In contrast, studies 
conducted in Indonesia show that MinION can be used to 
identify and monitor dengue virus in clinical samples and 
to monitor the clades currently circulating [42]. Finally, 
during the ongoing COVID-19 pandemic, MinION WGS 
was used for surveillance in Equatorial Guinea and was 
used to detect two variants of the beta and delta variants in 
a single asymptomatic patient [43•].

Perhaps most promising is the recent use of MinION WGS 
in infectious diseases research. MinION WGS proved to be a 
cheaper and quicker method for the diagnosis of nosocomial 
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tuberculosis infections among children in an endemic region 
of Zambia, when compared to second next-generation Illumina 
sequencing technology [61]. In West Africa, MinION WGS ena-
bled complete sequencing of the outbreak strain of Neisseria 
meningitidis that causes meningococcal and when compared 
to existing strain enabled to track the commensal strains which 
became a pathogen by stepwise acquisition of virulence factors 
[62], while in another study of the same organism by the same 
author in Ethiopia, MinION WGS was used along with Illumina 
technologies and predicted how the ST-192 clone could evolve 
to pathogen and how it would acquire a type B capsule, fetA, and 
infection with the MDAΦ phage although less likely would it 
become a pathogen [63]. A surveillance study conducted in West 
Africa on cholera outbreaks found no new V. cholerae O1 was 
introduced into the region from outside of West Africa between 
2014 and 2018. Instead, population genetic analyses suggested 
nearby countries, like Ghana and Togo, had outbreaks that were 
genetically connected to outbreaks that occurred in Cameroon, 
Niger, and Nigeria [32]. In a study conducted in Kenya on Neis-
seria gonorrhoeae drug resistance, MinION WGS was able 
to detect strain drug resistance profiles, without the need for 
another sequencing platform like Illumina, allowing MINION 
WGS to be used for clinical diagnosis and epidemiological stud-
ies [64••]. In Ethiopia, a study focusing on the antimicrobial 
activity of Streptomyces spp. identified 36 biosynthesis gene 
clusters (BGCs) in the genome [65]. MinION WGS was used 
to identify Paenibacillus spp. among patients with hydrocepha-
lus in Uganda and a complete genome sequence of Paeniba-
cillus thiaminolyticus was generated by combining short-read 
sequencing, optical mapping (Bionano Genomics), and MinION 
sequencing [66, 67]. In Malawi, a genomic epidemiology study 
was conducted on E. coli using MinION sequencing to identify 
most drug-resistant sequence types [44•].

In other studies, MinION WGS was used in a resource-lim-
ited setting to identify human genetic factors underlying disease. 
Sickle cell disease and other hemoglobinopathies were studied 
using MinION WGS in Tanzania, which found the IVS1G > A 
mutation is present in clients of Arabic descent. MinION 
sequencing results were obtained from whole blood on the same 
day, compared to the traditional dried blood spot (DBS) used for 
sickle cell disease diagnosis. Furthermore, MinION sequencing 
of blood presents another advantage over DBS because it readily 
identifies incomplete Hb switching or co-inheritance of other 
hemoglobin variants [68]. MinION WGS was also shown to be 
equivalent to Sanger sequencing of the 16S and CO1 genes to 
identify similarities and differences between the tropical ver-
tebrates Amietophrynus brauni, Leptopelis vermiculatus, Riep-
peleon brachyurus, Sorex alpinus, Arthroleptis xenodactyloides, 
Rhynchocyon udzungwensis, and Leptopelis vermiculatus in 
Tanzania [41].

MinION sequencing has been successfully applied in the 
context of fungal detection in the developed world for various 
applications such as de novo genome assemblies of yeasts like 

Saccharomyces cerevisiae [69, 70], genome assembly from PCR 
products [29], detection of fungi using metagenomics [71, 72], 
fungal ecology studies [73], epidemiological outbreaks of Can-
dida species [74], and diagnosis of fungal pathogens in plants 
[27, 28, 30]. However, in resource-limited settings, application 
of MinION sequencing technologies has not been yet applied, 
thus providing opportunities to explore the utilization of this 
technology in mycology.

Challenges of Using MinION Sequencing 
in Resource‑Limited Settings

Power blackouts are still a common challenge in resource-lim-
ited areas and can impact both MinION runs, storage condi-
tions for reagents, and upload of data to cloud-based servers for 
data analysis [37, 40••]. Cutting-edge computers and acces-
sories are not easily accessible in resource-limited areas, espe-
cially for field studies located in remote areas [37]. Shipping of 
disposable reagents from the manufacturer to resource-limited 
regions of the world is still a significant challenge, often due to 
the necessary reagent cold-chain transport requirements that 
cannot be guaranteed, resulting in ineffective or sub-optimal 
flow cells upon arrival. Maintaining proper reagent storage 
conditions in remote sites can also be challenging [37]. While 
the initial cost to establish MinION sequencing, and individual 
sample costs, is low compared to other sequencing platforms, 
MinION sequencing technology is still cost-prohibitive for 
many researchers and clinicians in low-resource settings [37]. 
The MinION WGS sequencing technology relies on internet 
connections with at least 3G capacity, which is still not avail-
able in some countries or regions, limiting on-site disease sur-
veillance and outbreak investigations in these areas [37]. RNA 
degradation in stored samples requires stabilizing reagents that 
are often not accessible in low-resource settings, limiting the 
ability to collect samples for future surveillance and epide-
miologic studies [40••]. Most laboratories have limited spaces 
from construction designs that cannot allow expansion and 
space may not be sufficient for the storage of reagents [40••]. 
There is a lack of established supply chains in resource-limited 
areas for sequencing reagents, and being a new field of study, 
even centralized laboratories have supply chain issues and lack 
MinION-specific sequencing skills [32].

Opportunities and Improvements 
that Would Enable Use of MinION WGS 
in Low‑Resource Settings

Simple DNA extractions, like PDQeX DNA purification tech-
nology, where DNA is extracted and purified within the same 
tube system should be encouraged in low-resource settings where 
it is difficult to establish a well-equipped laboratory for DNA 
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extraction [38, 75]. Design and development of MinION WGS 
software which works offline without the need of internet will 
provide greater access to the technology in remote areas where 
internet connections and stable power supplies are not possible 
[39]. Sequence modules and online training in bioinformatics 
are a necessity to conduct successful MinION WGS projects. A 
1-month training module for MinION which includes bioinfor-
matics, a software tutorial, and hands-on training on the extrac-
tion of DNA/RNA, library preparation, and loading of the sam-
ples has been designed which can make technology use possible 
in low-resource settings [76•]. Yet, in-person or on-site train-
ing before a project is conducted would allow users to develop 
confidence in running and analyzing data [40••, 68]. Online 
training can also provide alternative opportunities for access-
ing more modules and techniques, due to their availability to all 
researchers. Regional and international surveillance should be 
encouraged more as it provides pooled funding, allows sharing of 
knowledge and sequencing data, and also encourages monitoring 
of genetic variations in disease-causing organisms over time [32, 
40••]. Additionally, collaborative studies should be encouraged 
among developed nations and research programs in low-resource 
settings. These collaborations promote data sharing and also offer 
necessary training and provide additional funding and sharing of 
experience from the developed world to resource-limited areas 
[40••]. Collaborations also provide opportunities for sharing and 
application of protocols developed for outbreaks of diseases in 
the developed world to be used in low-resource setting areas [35]. 
Use of protocols designed in developed nations would enable 
quick application, especially in outbreak investigations, without 
the initial cost of development and optimization [39, 40••, 59•, 
60••]. Finally, development of field laboratory packages by the 
manufacturer and project engineers would encourage the use of 
technology with minimal laboratory infrastructure. For example, 
equipment and consumables packaged within self-contained sys-
tems that also work as temporary bench tops in the field would 
greatly enhance the accessibility of MinION technology in 
remote regions of the world (38, 39).

Conclusion

MinION WGS is becoming a commonly used sequencing 
method in the developed world, but MinION sequencing is 
most likely to have the largest impact by providing acces-
sible sequencing capability in low-resource settings. While 
many protocols to use the MinION sequencing technology 
are established, these protocols often do not account for 
the utilization of the technology in low-resource settings. 
This technology has already shown significant benefits in 
the context of outbreak investigations and surveillance of 
drug-resistant isolates. If barriers to accessibility for use in 
low-resource settings can be overcome, there is potential for 

vast implementation across the globe that will lead to excit-
ing new research avenues and discoveries.
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