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Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany,

8 Laboratory for Computational Physiology, Harvard-MIT Division of Health Sciences & Technology,

Cambridge, Massachusetts, United States of America, 9 Anesthesiology and Critical Care Department,

Hospital Clinic de Barcelona, Barcelona, Spain, 10 Department of Journalism, Northeastern University,

Boston, Massachusetts, United States of America, 11 Department of Surgery, University of the Philippines,

Manila, Philippines, 12 Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical

School, Boston, Massachusetts, United States of America, 13 Department of Biostatistics Harvard T.H, Chan

School of Public Health, Boston, Massachusetts, United States of America

☯ These authors contributed equally to this work.

* kseasted@bidmc.harvard.edu

Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The availability of large, deidentified health datasets has enabled significant innovation in

using machine learning (ML) to better understand patients and their diseases. However,

questions remain regarding the true privacy of this data, patient control over their data, and

how we regulate data sharing in a way that that does not encumber progress or further poten-

tiate biases for underrepresented populations. After reviewing the literature on potential rei-

dentifications of patients in publicly available datasets, we argue that the cost—measured in

terms of access to future medical innovations and clinical software—of slowing ML progress

is too great to limit sharing data through large publicly available databases for concerns of

imperfect data anonymization. This cost is especially great for developing countries where

the barriers preventing inclusion in such databases will continue to rise, further excluding

these populations and increasing existing biases that favor high-income countries. Prevent-

ing artificial intelligence’s progress towards precision medicine and sliding back to clinical

practice dogma may pose a larger threat than concerns of potential patient reidentification

within publicly available datasets. While the risk to patient privacy should be minimized, we

believe this risk will never be zero, and society has to determine an acceptable risk threshold

below which data sharing can occur—for the benefit of a global medical knowledge system.
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Introduction

Many widely available imaging datasets exist containing deidentified data from thousands of

patients and may be used to train machine learning (ML) algorithms, such as the COVID-19

Chest X-ray Dataset Initiative [1] and the CheXpert Chest Radiograph dataset [2]. In the ideal

case, open datasets provide a robust and diverse foundation to train clinical prediction models,

leading to improved predictive accuracy and generalizability of the derived models. However,

questions remain regarding the true privacy of publicly available deidentified health data,

patient control over their data, and how we regulate data sharing in a way that that does not

encumber progress or further potentiate biases for underrepresented populations throughout

the world.

In this review article, we address concerns over data anonymization and further explore

how increased regulations may inadvertently exclude developing countries over concerns of

imperfect data anonymization. We argue limiting data sharing would not only slow the devel-

opment of future medical innovations and clinical software, but could also potentially expand

existing biases that favor high-income countries. While the risks to patient privacy should be

minimized, we believe this risk will never be zero, and an acceptable risk threshold below

which data sharing can occur must be agreed upon by society for the benefit of a global medi-

cal knowledge system.

Deidentified health datasets promote innovation

The benefit of sharing deidentified data can be readily demonstrated by the widely used and

publicly available Medical Information Mart for Intensive Care (MIMIC) database, now avail-

able in its fourth iteration [3,4]. This dataset includes deidentified clinical data from over

50,000 admissions to critical care units at Beth Israel Deaconess Medical Center in Boston,

Massachusetts, United States of America, spanning over a decade in time. Access to the data-

base requires a “Data Use Agreement,” which mandates that the developed source code for

projects utilizing the data must be shared, promoting reproducibility and collaboration

between research groups. Thousands of publications and conference proceedings have utilized

this repository to advance our knowledge of critical care, and it has inspired the creation of

similar databases in countries throughout the world, fostering international data sharing. The

Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medi-

cine (ESICM) have embraced ICU patient data sharing [5], and the Amsterdam University

Medical Center Database (AmsterdamUMCdb) adds to a growing list of globally available

databases [6].

Further examples of how large international datasets have accelerated healthcare innovation

continue to surface. One example includes a combination of mammography datasets from

South Korea, USA, and the UK that led to the development of an AI algorithm that demon-

strated not only improved breast cancer detection on mammography compared to radiolo-

gists, but also improved radiologist performance when assisted by AI [7]. Another example

involves the use of open-access datasets and data from Stanford University—creating a dataset

2 orders of magnitude larger than previous skin pathology datasets—to develop a convolu-

tional neural network (CNN) capable of skin cancer classification comparable to dermatology

experts with potentially greater generalizability due to the size of the dataset enabling a more

representative coverage of patients [8]. Similarly, combined datasets from China and the US

were used to create algorithms capable of classifying macular degeneration and diabetic macu-

lar edema [9].

Shared learning from these large datasets continue to provide powerful potential to enable

scientific advances and medical innovation. However, many barriers exist to the creation of
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large, publicly available datasets, including concerns over the security of the shared data and

how the open dataset will be used (Fig 1).

Concerns over publicly available dataset security and regulation

In the ideal case, publicly available, deidentified datasets provide a robust and diverse founda-

tion to train clinical prediction models, improving predictive accuracy and generalizability of

the derived models and enabling medical innovation. However, concerns over the security and

privacy of these datasets exist, potentially limiting the creation and diversity of new datasets.

Interest in governmental regulation of these datasets is becoming more prevalent, as demon-

strated by proposed laws in the US [10], China [11], and the European Union [12]. Patients

are also becoming increasingly aware that their data are being used for research or commercial

purposes and are rightfully more interested (particularly women and minorities) in controlling

that data and how it is used [13]. One study found that most patients want to know what their

personal health information (PHI) will be used for and are uncomfortable sharing their PHI

with commercial entities but are comfortable sharing with their own institution [14]. Younger

patients and women preferred more control of their PHI than older patients and males with

respect to research participation, with a significant number of patients preferring study-spe-

cific consents. Most wanted to be informed of what their PHI was being used for, and 70%

wanted to receive the results of studies using their PHI—highlighting the shifting patient pref-

erences for more transparency and interest in how their PHI is being used.

Concerning data security, best practices [15] exist in the US for deidentifying image data to

comply with the standards outlined in the Health Information Portability and Accountability

Act (HIPAA) Privacy Rule [16], protecting a patient from potentially being identified from

Fig 1. The balance between the importance of publicly available data versus the risks of sharing data publicly. Potential solutions are presented. AI,

artificial intelligence; LIC, low-income country; LMIC, low-middle-income country.

https://doi.org/10.1371/journal.pdig.0000102.g001

PLOS DIGITAL HEALTH

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000102 October 6, 2022 3 / 13

https://doi.org/10.1371/journal.pdig.0000102.g001
https://doi.org/10.1371/journal.pdig.0000102


publicly available images. As defined in the HIPAA Privacy Rule, deidentified data are not reg-

ulated and may be shared without restriction. Standard deidentification techniques to remove

protected information from images and associated metadata include pseudo-anonymization

and k-anonymity [17,18]. However, deidentification methods are often automated and can be

imperfect, as demonstrated, for example, by Google canceling the release of a public chest X-

ray (CXR) dataset after discovering patient data was still embedded in some of the images [19].

Beyond the risk of leaking private information directly with an insufficiently deidentified

dataset, there also exists the risk that an attacker may attempt to utilize information present in

other publicly or privately available datasets to reestablish a link between deidentified patient

images and their individual identities. One group has recently presented an ML approach that

further highlights the linkage risk inherent in publicly available imaging datasets. Instead of

training models on the available data to potentially predict pathology, they trained deep-learn-

ing (DL) models to identify patients from the available images. Their results are revealing:

Multiple images of a single patient can accurately be determined to belong to the same original

patient, despite standard deidentification efforts and without a shared identifier linking these

images together [20]. Using 2 Siamese neural networks (SNN) trained on the Chest X-ray 14

dataset [21], the authors were able to determine whether 2 CXRs belonged to the same patient,

even if taken several years apart and with new pathological development between the time

points the images were taken. The implications are far-reaching: Given a patient’s CXR image,

one could potentially match that image to other publicly or privately available CXR datasets

that may contain imperfectly deidentified metadata and reidentify that patient or gain access

to additional sensitive information. The ability to accurately match patients across deidentified

datasets exposes the weakness of relying on deidentification techniques that do not guarantee

complete anonymization or differential privacy [22]. Beyond reidentification from CXR

images, additional concerns exist regarding reidentification from head and neck images that

include the patient’s face, highlighting the need for defacing software to deface patient images

in datasets that include facial profiles [23,24].

An important consideration is the trade-off between the degree of anonymization—as mea-

sured in terms of differential privacy—and utility/representativeness for downstream clinical

prediction tasks [25]. Despite Packhauser and colleagues demonstrating a potential route for

an attacker to gain access to sensitive patient information, it is essential to note that the mere

ability to match records belonging to the same patient does not yet constitute a reidentifica-

tion. An attacker would still require access to either (i) an imperfectly deidentified dataset that

allows further inferences about the patient or their identity or (ii) a dataset that was not dei-

dentified containing private information about the patient to be able to exploit the ability to

match patients across datasets [26].

Tempering concerns over public data security

Despite these valid concerns over data security, there currently exists little publicly available

evidence of patient identities having been linked to open health data (OHD) despite the theo-

retical impossibility of true anonymization. “Nothing about an individual should be learnable

from the database that cannot be learned without access to the database” was, to the best of our

knowledge, first proven by Dwork [27] and has led to the development of the differential pri-

vacy framework that—in lieu of full anonymization—instead seeks to quantify and provide

theoretical limits for the maximum privacy loss incurred by individuals. Dwork’s impossibility

result has far reaching consequences for healthcare practitioners wishing to release any data.

In particular, reidentification attacks, such as the one highlighted in [20], cannot be ruled out

fully due to auxiliary information, and practitioners wishing to release healthcare data are
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therefore left with the difficult decision of managing the trade-off between the value to society

of sharing data on the one hand and the risk of privacy loss for individuals on the other. While

the previously mentioned HIPAA Privacy Rule outlines clear criteria for deidentification, it

does not provide regulatory guidelines on managing differential privacy trade-offs. It is impor-

tant to note that the potential for privacy loss and reidentification applies to the release of any

data, including statistics on a cohort level. In response to these challenges, several organiza-

tions that routinely deal with personal data and statistics thereof have turned towards the

adoption of differential privacy methods to systematically quantify and manage privacy risks,

such as, for example, the US Census Bureau [28] and Apple [29].

To better quantify the risk of patient reidentification, we sought to evaluate the literature on

this topic to assess current concerns over data security, including larger-scale data breaches.

Subtle approaches to reidentification of (potentially improperly) anonymized health data

stand in stark contrast to the illegal, forcible acquisition of personal health data by means of a

data breach—which includes illegal disclosure, attainment, or use of information without

authorization. Theft of medical records—in contrast to credit card records—is attractive to

criminals because they contain sufficient information to secure loans, open a bank account,

obtain health services and prescription medication, etc. In brief, identity theft may be the prin-

cipal reason for intentional data disclosure [30]. Of reported data breaches in the USA between

2015 and 2019, the health sector accounted for 76% of all 10 billion cases [31].

Under US federal legislation, if a healthcare data breach affects 500 or more patients, it

must be reported to the Office of Civil Rights (OCR). The OCR data breach portal provides an

online database describing data breaches of protected health information (PHI) [32]. To evalu-

ate the frequency of PHI data leakage through data breaches, we downloaded and analyzed

data containing type of breach, location of breached information, and number of individuals

affected during the last 2 years. The most frequent type of PHI data breach was the one pro-

duced by hacking activities (72%) followed by unauthorized disclosure (21%). Regarding

where the data was hosted when the breach occurred, almost all leaks affected servers (93%)

and the second location was email (35%). Network servers and email have become the main

locations for hackers using different techniques such as malware, ransomware, or phishing

attacks to prey on electronic health records (EHRs) [31]. Note that 62% of the data leaks came

from more than 1 location. Combining type of breach and location, hacking the internal net-

work to reach servers is the main cause of PHI data leakage well above other causes (Fig 2).

Compared to the large and growing problem of hackers attacking PHI data servers, there is

no category nor series of case reports about data leakage from OHD. A potential reason for

this discrepancy could be that anonymized OHD would generally be stripped of patients’ full

names, address histories, financial information, and social security numbers, making OHD

less valuable for criminal purposes than private datasets that include personalized information.

Solely clinical data and “quasi-identifiers” remain that could potentially be reidentified with

relatively greater effort when combined with other data sources that contain personal identifi-

ers. In the end, a threat by criminal activity is present wherever data are stored and are always

subject to misuse or theft—with the utility of the data for malicious uses being diminished the

harder establishing a link to personalized identifiers is.

In order to approximate the number of known cases where individuals were reidentified

from OHD, we performed a literature review on PubMed [query = (“case” OR “example”)

AND (“re-identification” OR “reidentification” OR “re-id”) NOT (“theoretical” OR “video”

OR “camera” OR “pedestrian” OR “visual”)], excluding studies on reidentification attempts

from security cameras and genomic information (S1 Table). Reviewing the literature (n = 65)

and other relevant articles, reports on individuals being publicly reidentified from OHD were

scarce. A systematic review of reidentification attacks concluded the success rate of health data
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reidentification attempts was very low when considering studies that included data deidenti-

fied according to modern standards [33]. A contemporary analysis that assessed the reidentifi-

cation risk from a healthcare dataset of over 1 million patients at Vanderbilt University

Medical Center also suggests that reidentification risk is low considering a potential attacker’s

resources and capabilities [34].

In order to get a more holistic view outside of the medical literature, we expanded our

search by reviewing news coverage using Media Cloud, an open-source global news database

and analysis tool [35]. Media Cloud covers news stories, blog entries, and web pages and regu-

larly ingests news content from more than 60,000 publications worldwide. It also provides ret-

rospective coverage for many sources going back to 2010. Our search was limited to the US

only, as the use of this system requires careful selection of a media corpus to study. The well-

bounded media “collection” of the US provides the ability to draw meaningful conclusions

about the volume and proportion of attention to a specific topic within a larger media coverage

“universe” instead of as a tool to simply find relevant articles. Including other global areas

would have potentially diluted our ability to find meaningful results using this method, and

Fig 2. Magnitude of data breaches considering total number of records affected by type of breach and location in the US between November 2019 and

November 2021. Elaborated from raw data [32].

https://doi.org/10.1371/journal.pdig.0000102.g002
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the US media ecosystem is also known to be sensitive for media attention to subjects globally.

For this survey, we searched over 10,000 media publications from the US, publishing at either

the state or national level. The query used to identify coverage on this issue was [“de-anonymi-

zation” OR deanonymization OR “de-anonymize” OR deanonymize OR “re-identification”

OR reidentification OR “re-identify” OR reidentify]. The timeframe of coverage searched was

5 years, 09-01-2016 through 09-01-2021. Data were manually cleaned to remove a minimal

number of irrelevant articles (in which the term deanonymize was used in other contexts), or

coverage to the issue outside of the US. The resulting corpus was 186 stories from 127 sources

(S2 Table). We manually coded the articles on 2 variables: The first was the context in which

the issue was discussed: theoretical discussion (143/186, 77%), discussion of research released

(20/186, 11%), or discussion of an actual case (23/186, 12%). The remaining articles without

cases or research were assigned the code of discussing the issue theoretically (i.e., in the

abstract). Despite ongoing thematic coverage of this issue over the past 5 years, there is a pau-

city of actual examples (S3 Table). Hence, we can assume that if there were more publicly

known examples, there would be considerable coverage given the ongoing news attention to

this issue. None of the identified cases involved health data nor healthcare databases.

Against this backdrop, the medical field must address essential questions, such as how do

we improve PHI protection, how do we increase patient involvement in how their data are

used, and how do we do this in a way that continues to promote global collaborative efforts in

analyzing OHD without a complete shutdown in progress? Given the paucity of evidence sup-

porting concerns over data security of publicly available datasets, we believe that continued

investment in publicly available datasets to promote innovation is prudent and that there may

be implicit harm in limiting data sharing.

Potential harms of prematurely limiting data sharing—Potentiating

bias

The aforementioned developments suggest that matching deidentified patient records across

datasets is potentially easier than previously thought, and patients are at the same time increas-

ingly interested in more control over how their data are being used. Increased availability of

deidentified patient data has led to a global boom [36] in innovation with ML-driven software

as a medical device (SaMD), with little data to support concerns over publicly available medical

data security. Crucial to this discussion is how limiting data sharing (such as the current legal

framework proposed by the EU [12]) would affect underrepresented populations and potenti-

ate bias [37].

The medical knowledge system that informs clinical practice worldwide has historically

been based on studies primarily performed on a handful of high-income countries and typi-

cally enrolling white males [38–40]. Guidelines for the management of heart disease, for exam-

ple, are disseminated to the rest of the world from professional societies such as the American

Heart Association. To truly move towards a global knowledge medical system that incorpo-

rates data from all parts of the world to decrease bias and increase data fairness, data from

places that historically have not had a leading role in the development of current medical stan-

dards should be included—ethnic minorities, lower-income countries (LICs), and lower-mid-

dle-income countries (LMICs). One example in which bias affected an ML algorithm includes

a breast cancer histology algorithm that reflected ethnicity rather than intrinsic tumor biology

due to site-specific staining protocols and region-specific demographics [41]. In this example,

the bias was introduced due to 1 site having more black patients included than many of the

other sites. Biased models risk repeating cancer care inequities related to ethnic background.

Another study identified extensive bias in several publicly available CXR datasets used for ML
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algorithms and found multisource datasets may combat such bias [42]. There is evidence of

bias and underrepresentation even within the US as 70% of data comes from 3 wealthy states

as opposed to rural regions, and less than one-third of states are represented in data-sharing

platforms [43].

With digitalization, every country has an opportunity to create its own medical knowledge

system using data routinely collected in the process of care. However, many countries are only

just starting to reach the levels of digitalization of countries like the US and China, and

increased regulations on the use of AI could further limit the participation of developing coun-

tries in these global datasets. Up to 94% of funding for AI startups over the last 5 years is

accounted for by the US and China [44]. This poses the risk of potentiating bias given the lim-

ited diversity of datasets. However, there could potentially be harm in using data from devel-

oping countries as well given concerns for poor data collection methods and lack of inclusion

of disadvantaged populations. Indeed, biased AI has led to racial profiling in South Africa [45]

and labor exploitation in Venezuela [46]. In Africa and Latin America, there is a significant

lack of knowledge and regulatory frameworks surrounding PHI, and the concept of PHI is

largely alien to the patient and sometimes practitioners [47,48]. Similarly, in the Philippines,

illness and care is a communal experience, with many taking comfort in sharing the steps of

their care process with family and close friends—which, in many rural areas without digital

healthcare, is essentially the entire village or barangay. As many as 2.3 million Filipino families

have no electricity, limiting access to digital healthcare. Sub-Saharan Africa (including

Uganda) suffers from limited usage of electronic health records due to the high cost of pro-

curement and maintenance, poor internet connectivity, intermittent power supply to the rural

settings, and low uptake by healthcare workers [49,50]. There is limited training on how to

protect and/or handle patient information as this is prioritized secondary to care delivery

given technical challenges (e.g., power supply, internet, and computer infrastructure) and the

requirement that a strained workforce must serve high volumes of patients [51].

The digital healthcare experience in these countries emphasizes how increased regulations

on publicly available datasets will likely raise the barrier to entry for developing countries, fur-

ther excluding their populations from datasets and increasing biases that favor high-income

countries. While no data directly supports this at this time, there is some evidence that limiting

data flow adversely affects innovation [52]. It is possible that barriers to data flow make it more

time-intensive and expensive to share data overseas, benefiting those countries with the

resources to overcome these barriers.

Potential solutions

Therefore, if we are to achieve unbiased datasets that represent the global community, the lead-

ers in healthcare digitization need to assist LICs/LMICs with contributing to publicly available

datasets, but also assist in enabling accurate data collection. This support would allow these

countries to leverage their data to solve clinical problems unique to their populations and

improve current global datasets by more representatively covering diverse populations. As

LICs and LMICs embark on developing digital health infrastructure, views of the marginalized

and vulnerable must be included in defining how their data will be collected, used, and how

they can benefit. It is therefore essential to engage patients and the community when promot-

ing digital literacy in LICs/LMICs. Varied demographics—for example, laborers, the urban

poor, indigenous peoples, elderly, women—must be involved in developing PHI governance

bodies so that their voices are included.

Other proposed solutions to improving data sharing include promising new technologies,

such as synthetic data or federated learning [53–55], which have been suggested to potentially
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help researchers publicly sharing health data while better managing the risk of deidentification.

However, linkage risk will always remain a concern as even releasing summary statistics alone

constitutes a certain loss of privacy for the contributing data sources in terms of differential

privacy [28,56]. In the federated learning framework, investigators from different institutions

combine efforts by training a model locally on their own data, and sharing the trained model

parameters with others to generate a central model, rather than sharing the source data directly

[57]. However, the feasibility of using federated learning for data sharing is predicated on con-

sistent data curation, standards, and harmonization across the participating institutions. Addi-

tionally, given that the data are not combined, the opportunity to expand the number of rare

events may not be fully leveraged if the modeling is performed in isolation and only the meta-

model is shared across institutions. Most importantly, algorithmic bias will be harder to detect

if local investigators only see their own data. Given how challenging it is to detect and fix algo-

rithmic bias in models trained on pooled data, it would likely be even more difficult to address

algorithmic bias when learning is distributed. Resource allocation towards federating learning

platforms and technologies should therefore be balanced with those allocated towards better

tools for deidentification and standardized data curation.

To ensure proper data collection and sharing, legal policy and data security frameworks

should be put in place to strengthen the protection of PHI datasets from accidental leakage

and potential malicious outside attacks [58]. These policies should in particular regulate stew-

ards of PHI datasets that, if combined, may enable reidentification via linkage with openly

available datasets. Substantial penalties should be developed to punish any attempts to exploit

linkage of open medical data with the aim of reidentifying patients or using PHI for commer-

cial purposes, rather than for society’s benefit, without patient consent. Additionally, although

increasing patient involvement undoubtedly adds more complexity, patient stewardship over

their data is a fundamental right. As the technology to study PHI advances, technologies to

improve PHI management ought to advance in lockstep. Numerous countries have embarked

on creating AI governance frameworks, but there is no central coordination between nations

to set standards for proper handling of data sharing across international boundaries [59]. Equi-

table AI governance and attempts at global AI regulations and standards may help consider

the needs and inequalities of developing countries [60].

Investment in technology infrastructure (such as EHRs) for data collection and data sharing

and surveillance for this technology should be a priority for these populations. The benefits of

global investment in LIC/LMIC digitalization are numerous and include improved accuracy

of collected data through health information management systems, decreased bias, and

improved algorithmic fairness through the inclusion of marginalized groups in training data

and ensure accountability for proper data collection and sharing. To foster investment, devel-

oping countries may want to consider incentives for foreign tech companies to conduct

research and develop facilities to promote infrastructure development. The global AI commu-

nity should continue to consider these investments, creating open-source software to promote

proper data handling, data anonymization software, and AI governance standards. Although

MIMIC represents a model for the use of big data and how it may contribute to improving

medical understanding in high-income countries, such a model may be less feasible in LICs/

LMICs where patients may lack access to advanced clinical services. Thus, as health systems in

LIC/LMICs undergo digital transformation, there should be equal attention to, or even affir-

mative action towards, data analysis of services rendered at the primary care level where the

majority of clinical encounters for health promotion and disease prevention occur. In many

cases, poor or socially disadvantaged patients may have more complex diseases and have no

recourse but to receive care in the nearest public primary care facility, potentially never reach-

ing a hospital. These patients would not be represented if data collection was limited to

PLOS DIGITAL HEALTH

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000102 October 6, 2022 9 / 13

https://doi.org/10.1371/journal.pdig.0000102


hospitalized patients, and, therefore, the structure of local healthcare systems must be consid-

ered when designing open clinical databases for LICs/LMICs.

Conclusions

We would argue that the cost—measured in terms of access to future medical innovations and

clinical software while potentiating bias—of slowing ML progress is too great to stop sharing

data through large publicly available databases for concerns over imperfect anonymization

and potential linkage risks. Although the potential for linking public medical records at the

detriment of patients exists, a robust regulatory framework that protects both open sharing of

deidentified data for good, and strongly penalizes patient reidentification, may be a more mea-

sured solution than attempting to broadly limit data sharing. Publicly available datasets pro-

vide the fuel for widespread application and adoption of AI in healthcare and for advancing

our understanding of heterogeneous and diverse patient populations globally. Slowing prog-

ress by limiting data sharing risks curtailing medical innovation and significantly impeding

our ability to advance our understanding of health and global disease. Preventing AI’s progress

towards precision medicine and sliding back to the “white-size-fits-all” clinical practice dogma

poses a more significant threat than contemporary concerns of potential patient reidentifica-

tion within publicly available datasets. This potential reidentification risk will never be zero,

and we have to determine an acceptable risk threshold for sharing data for the benefit of a

more global medical knowledge system. The global AI community needs to take an active role

to assist developing nations on their healthcare digitization quest through standardized AI

governance for data sharing and investment in equitable data collection infrastructure.
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54. Schütte AD, Hetzel J, Gatidis S, Hepp T, Dietz B, Bauer S, et al. Overcoming Barriers to Data Sharing

with Medical Image Generation: A Comprehensive Evaluation. arXiv preprint arXiv:201203769. 2020.

55. Sadilek A, Liu L, Nguyen D, Kamruzzaman M, Rader B, Ingerman A, et al. Privacy-first health research

with federated learning. 2020.

56. Dwork C. (2006) Differential Privacy. In: Bugliesi M., Preneel B., Sassone V., Wegener I. (eds) Autom-

ata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4052.

Springer, Berlin, Heidelberg https://doi.org/10.1007/11787006_1
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