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Abstract. Brucellosis is an infectious bacterial zoonosis of public health
and economic significance. In this paper, a mathematical model describing
the propagation of bovine brucellosis within cattle population is formu-
lated. Model analysis is carried out to obtain and establish the stability
of the equilibrium points. A threshold parameter referred to as the ba-
sic reproduction number R0 is calculated and the conditions under which
bovine brucellosis can be cleared in the cattle population are established.
It is found out that when R0 < 1, the disease can be eliminated in the
cattle population or persists when R0 > 1. Using Lyapunov function and
Poincairé-Bendixson theory, we prove that the disease-free and endemic
equilibrium, respectively are globally asymptotic stable. Numerical simu-
lation reveals that control measures should aim at reducing the magnitude
of the parameters for contact rate of infectious cattle with the susceptible
and recovered cattle, and increasing treatment rate of infected cattle.

Keywords: Bovine brucellosis, endemic equilibrium, global stability, Lyapunov

function, vertical transmission.

AMS Subject Classification: 34D23, 92D30, 92B05, 93A030.

1 Introduction

Brucellosis is an infectious and contagious zoonotic bacterial disease of an-
imals and humans caused by a bacterium of genus Brucella. The four Bru-
cella species responsible for the disease in decreasing order are: B. meliten-
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sis in small ruminants such as goats and sheep, Brucella abortus typically
found in cattle, Brucella suis in swine, and Brucella canis in dogs [16]. It
is endemic in low income countries of south sub-Saharan Africa and South
Asia where weak control actions are still common. Most of the economic
losses and high number of human infections are reported the regions of
Africa, Asia, Syria, Iran, Iraq, and Saud Arabia. Bovine brucellosis is re-
sponsible for economic losses due to abortion, infertility and reproduction,
weight loss, loss of calves, reduced meat and milk production [4], and also
due to time lost by patients from normal daily activities.

Bovine brucellosis transmission to susceptible livestock occurs through
direct contact with infected animal tissues, urine, and blood or with the en-
vironment that has been contaminated with discharges from infected cattle.
It can also be vertically transmitted from infected mothers to their new-
borns.

Human brucellosis main sources include infected livestock and Brucella
in the environment. Transmission of brucellosis to humans occurs through
contact with infected animals or food of animal origin. Such contacts may
be with secretions, placenta, calves and aborted fetuses. The disease can
also be indirectly transmitted through consumption of contaminated milk
or dairy products such as soft cheeses, yogurt and ice-creams prepared
from unpasteurized milk that may be contaminated with the bacterial agent
[7,8,14]. Other possible sources human brucellosis poor handling of manure
from infected cattle and occupational exposure (for example veterinarians
and abattoir workers) and inhalation of the causative agent. Human to
human transmission of brucellosis is rare [22], though it may occur through
contaminated blood transfusion.

The primary symptoms of bovine brucellosis in cattle are drop in the
milk production of the cow and affected herd, infertility, abortion and weak-
ened calves. The most signs and symptoms of human brucellosis are clin-
ical manifestations that mimic other infectious diseases such as malaria,
typhoid and rheumatic fever [5, 11]. They include fever, asthenia, mylgia,
sweat, headache, chills, hepatomegaly, splenomelagy, fatigue and joint pain
that can last for weeks to months.

Currently, no human vaccine for brucellosis exists and the occurrence of
brucellosis in a region is directly linked to the status of animal brucellosis.
It is therefore necessary to have interventions that may control zoonotic
infection in animal reservoirs or prevent disease transmission from animals
to humans that may offer more effective and economically viable approaches
to disease management than those focusing on the human population alone
[11,12,19].
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Human brucellosis prevention and control strategies should aim reduc-
tion of animal-to-human transmission. They isolation of the infected ani-
mals, disinfection of contaminated areas, mass vaccination of livestock at
risk, sustained removal of the infected animals, test and slaughter of in-
fected animals/herds [12, 26] should be enforced. There is also need for
public awareness campaigns for populations living in agro-pastrol commu-
nities to disseminate knowledge about brucellosis and associated risks such
as consumption of unpasteurized dairy products, eating half-cooked meat,
and use of protective measures in high-risk occupational groups such as
livestock farmers, veterinarians, diary workers, slaughter house workers and
laboratory personnel should be encouraged [18]. Treatment of infected cat-
tle is an important method in controlling the spread of the brucellosis. The
infected cattle successfully treated translate to recovered class.

Modeling is a valuable tool in planning and evaluating of intervention
measures for disease control and prevention. Mathematical models based
on transmission dynamics of animal diseases have long provided important
insights to guide their prevention and control [24]. This is because they
can help to figure out decisions that are of significant importance on the
outcomes and provide comprehensive examinations that enter into deci-
sion making. They can be used to evaluate control strategies against the
infection in order to determine the optimal control measures.

Mathematical models for the spread infectious diseases through direct
contact have been reviewed in [13]. Mathematical models that incorporate
both direct and indirect transmissions of brucellosis have been studied in
[2, 15, 20, 23, 27]. Direct transmission dynamics of brucellosis among bison
(Bison bison) herds and elk have been considered in Dobson and Meagher
[6] using an SIR epidemic model and among bison alone in Abatih et al. [1].

Li et al. [15] proposed a model to evaluate control strategies for brucel-
losis and found out that a combination of animal vaccination, environment
disinfection, and elimination of infected animals were necessary to ensure
cost-effective control for brucellosis. In the model by Ainseba et al. [2] an
SI epidemic model for ovine brucellosis incorporating direct and indirect
transmissions is considered in which the direct transmission follows a bi-
linear incidence rate and assumes no disease-related mortality and control
interventions.

In this paper, a SIR epidemic model for bovine brucellosis in cattle
population is presented. The successfully treated infected cattle translate
to the recovered class. When the treatment wanes off, the recovered cattle
may become infected again through interaction with the infectious cattle.
Both the susceptible and recovered cattle acquire infection through direct
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contact with the infectious cattle. The infection may also be transmitted
from infectious mothers to their newborns. The transmission of brucellosis
via direct follows standard incidence law.

This paper is organized as follows: In Section 2, we formulate the model
based on the assumptions, definitions of the variables and parameters. In
Section 3, model analysis is carried out. The equilibrium points of the
model and their stability are established and numerical simulation is done
as well. The discussion of results and conclusion are done in Section 4.

2 Mathematical model

2.1 Formulation of the Model

A mathematical model to study transmission dynamics of bovine brucel-
losis in the cattle population is formulated. The cattle population is di-
vided into three epidemiological classes S(t), I(t) and R(t) that denote the
number of the cattle population that susceptible, infectious, and recovered
at time t, respectively. The total cattle population size at t is given by
N(t) = S(t) + I(t) + R(t). Infectious cattle transmit bacterium to sus-
ceptible and recovered cattle through either direct contact or vertically to
their newborns. Direct transmission of bovine brucellosis to susceptible
and recovered cattle are given by the standard incidence rates (βSI)/N
and (βSR)/N, respectively. Recruitment into the cattle population is only
through birth at a constant rate λ. Vertical transmission of brucellosis is
indicated by the inflow of new infective cattle proportional to the number
of infective individuals already in the population at a rate ελI. Recovered
cattle give birth to susceptible calves. Infected cattle are treated at a rate
τ and have a disease-induced death rate α. The model assumes the disease
independent mortality that is a function of the population density and has
the form (µ+ (bN)/K) [17] and is shared proportionally by all subpopula-
tions.

The following assumptions are made in the formulation of the model:

(i) Recruitment into the population is only via birth.

(ii) There is homogeneous mixing in the cattle population.

(iii) Population birth rate and natural mortality rate are constant.

(iv) Treated cattle give birth to susceptible calves.

(v) Population birth rate is greater than the natural mortality rate.

(vi) Cattle that show symptoms and test positive to brucellosis are treated.

(vii) Grazing space is not so large and as such the effect of congestion con-
tributes on death rate of the cattle.
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(viii) The infected animals can be treated to remain carriers but after a
period, they are re-infected as treatment wanes off.

(ix) Treatment rate is proportional to the number of infective cattle.

(x) All the parameters are positive constants.

(xi) β > α.

Parameters used in the model are defined as follows:

α disease-related death rate of the cattle population.

β average contact rate / transmission rate.

ε proportion of newborns (from infected mothers) that are infected.

µ natural death rate of the cattle population.

λ per natural birth rate of the cattle population.

b intrinsic growth rate of the cattle population.

K carrying capacity of the environment.

τ treatment rate of the disease.

σ rate at which treatment wanes off.

Based on the assumptions and definitions of variables and parameters, our
SIR model can be written as a set of three coupled system of differential
equations as follows:

dS

dt
= λS + λR+ (1− ε)λI − βS

I

N
−

(
µ+

bN

K

)
S,

dI

dt
= βS

I

N
+ ελI −

(
µ+

bN

K

)
I − (τ + α)I + σβ

RI

N
, (1)

dR

dt
= τI −

(
µ+

bN

K

)
R− σβ

RI

N
,

together with S + I +R = N and

dN

dt
= bN

(
1− N

K

)
− αI.

This is a logistic growth for the cattle population in absence of brucellosis.
N is the total number of animals, K is the carrying capacity of the en-
vironment at equilibrium and b is the intrinsic growth rate of the cattle
population. Therefore, the feasible region solution set of system (1) enters
the region Ω = {(S, I,R) ∈ R

3
+ : N ≤ K}. In this case, whenever N > K,

dN
dt < 0. This means that the cattle population reduces asymptotically to
the carrying capacity, K. On the other hand, whenever N < K, every so-
lution with the initial condition in R

3
+ remains in that region for all t > 0.
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Thus, the region Ω is positively invariant and the model is well posed and
biologically meaningful.

Defining s(t) = S(t)/N(t), i(t) = I(t)/N(t) and r(t) = R(t)/N(t) as the
proportions for the classes S(t), I(t) and R(t), respectively, where s(t) +
i(t) + r(t) = 1. Then differentiating with respect to t, system (1) gives in
terms of proportions the following system equations.

ds

dt
= λr(t) + (1− ε)λi(t) + (α− β)i(t)s(t),

di

dt
= βs(t)i(t)− [(1 − ε)λ+ τ + α]i(t) + σβr(t)i(t) + αi2(t), (2)

dr

dt
= τi(t)− λr(t) + (α− σβ)r(t)i(t),

together with s(t) + i(t) + r(t) = 1. Using the simplification r(t) = 1 −
s(t)− i(t), the following system of equations is obtained.

ds

dt
= λ(1− s(t)− i(t)) + (1− ε)λi(t) + (α− β)i(t)s(t), (3)

di

dt
= βs(t)i(t) − [(1− ε)λ+ τ + α]i(t) + σβ(1 − s(t)− i(t))i(t) + αi2(t).

It be can verified that the region

T = {(s(t), i(t)) ∈ R+ : 0 ≤ s(t), 0 ≤ i, s(t) + i(t) ≤ 1},
is positively invariant with respect to system (3), where R

2
+ denotes the

non-negative cone of R2 including its lower dimensional faces. We denote

the boundary and the interior of T by ∂T and
◦
T respectively.

3 Analysis of the model

The equilibrium points are obtained by setting the right hand side of system
(3) to equal zero as follows:

λ(1− s(t)− i(t)) + (1− ε)λi(t) + (α− β)i(t)s(t) = 0, (4)

βs(t)i(t) − [(1− ε)λ+ τ + α]i(t) + σβ(1− s(t)− i(t))i(t) + αi2(t) = 0. (5)

From Eq. (5), we get i(t) = 0, or

βs(t)− [(1− ε)λ+ τ + α] + σβ(1− s(t)− i(t)) + αi(t) = 0.

βs(t)− [(1− ε)λ+ τ + α] + σβ(1− s(t)− i(t)) + αi(t) = 0,

βs(t)− [(1 − ε)λ+ τ + α] + σβ − σβs(t)− σβi(t) + αi(t) = 0,

(β − σβ)s(t) + (α− σβ)i(t) + σβ − [(1− ε)λ+ τ + α] = 0. (6)
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Dividing (β − σβ) through Eq. (6) gives

s(t) +
(α− σβ)i(t)

β − σβ
−

[
(1− ε)λ+ τ + α− σβ

β − σβ

]
= 0. (7)

This can be written as s(t) + ρi(t) − φ = 0, where

ρ =
α− σβ

β − σβ
and φ =

(1− ε)λ+ τ + α− σβ

β − σβ
.

From s(t) + ρi(t)− φ = 0, we obtain, s(t) = φ− ρi(t).
In the absence of the disease, i(t) = 0, and substituting i(t) = 0 into Eq.

(4) gives E0(1, 0). This represents the state in which there is no infection
in the population and is known as disease-free equilibrium.

The endemic equilibrium is obtained by substituting the expression for
s(t) into Eq. (4) to give

λ(1− i(t))− λ[φ− ρi(t)] + (1− ε)λi(t) + (α− β)i(t)[φ − ρi(t)] = 0,

λ− λi(t)− λφ+ λρi(t) + (1− ε)λi(t) + φ(α− β)i(t) − ρ(α − β)i2(t) = 0,

(λ− λφ) + [λρ− λ+ (1− ε)λ+ φ(α− β)]i(t) − ρ(α − β)i2(t) = 0,

λ(1− φ) + [λ(ρ− ε) + φ(α− β)]i(t) − ρ(α− β)i2(t) = 0.

Thus,

ρ(β − α)i2(t)− [λ(ε− ρ) + φ(β − α)]i(t) + λ(1− φ) = 0.

When the constant term in the characteristic equation is negative, then
β < (1− ε)λ+ τ + α, and we get one negative root and one positive root.
The positive root is given by

i∗(t) =
λ(ε − ρ) + (β − α)φ+

√
[(λ(ε − ρ) + φ(β − α))2 − 4ρλ(β − α)(1 − φ)]

2ρ(β − α)
.

The negative root is considered to be biologically meaningless. Hence,
i∗(t) = ψ

2ρ(β−α) , where

ψ = λ(ε− ρ) + (β − α)φ+
√

[(λ(ε− ρ) + φ(β − α))2 − 4ρλ(β − α)(1 − φ)].

From s∗(t) = φ− ρi∗(t), we obtain

s∗(t) = φ− ρi∗(t) = φ− ρψ

2ρ(β − α)
=

2φ(β − α)− ψ

2(β − α)
. (8)

Thus, we obtain an endemic equilibrium E1(s
∗(t), i∗(t)) given by

E1

(
2φ(β − α)− ψ

2(β − α)
,

ψ

2ρ(β − α)

)
.



144 J. Tumwiine and G. Robert

3.1 Local and global stability of the disease-free equilibrium
E0

We discuss the local stability of the disease-free equilibrium by examining
the linearized form of system (3) at the equilibrium E0(1, 0). The Jacobian
matrix of system (3) is given by

J =

[ −λ+ (α− β)i∗(t) −ελ+ (α− β)s∗(t)
(β − σβ)i∗(t) (β − σβ)s∗(t) + 2(α− σβ)i∗(t)− η

]
, (9)

where, η = [(1 − ε)λ + τ + α− σβ]. The Jacobian matrix (9) evaluated at
the disease-free equilibrium E0(1, 0) gives

JE0 =

⎡
⎣ −λ (α− β)− ελ

0 β(1 − σ)− [(1− ε)λ+ τ + α− σβ]

⎤
⎦ . (10)

The trace and determinant of the Jacobian matrix (10) at the disease free
equilibrium are given by

tr(JE0) = −λ+ β(1− σ)− [(1− ε)λ+ τ + α− σβ]

= −[λ+ (1− ε)λ+ τ + α] + β = −λ+ β − [(1 − ε)λ+ τ + α],

and

det(JE0) = −λ[β − σβ − (1− ε)λ− (τ + α) + σβ]

= −λ[β − [(1− ε)λ+ τ + α]].

It can be noted that tr(JE0) < 0 and det(JE0) > 0 if β < (1− ε)λ+ τ + α,
that is, β

(1−ε)λ+τ+α < 1. Defining R0 = β
(1−ε)λ+τ+α , it is easy to see that

tr(JE0) < 0 and det(JE0) > 0 if R0 < 1. Therefore, we have established
Lemma 1 below.

Lemma 1. The disease free equilibrium E0(1, 0) is locally stable if R0 < 1
and unstable if R0 > 1.

R0 is called the basic reproduction number [3], defined as the number
of secondary infectious cases produced by one primary case introduced into
an entirely susceptible population at the disease-free equilibrium.

Theorem 1. The disease-free equilibrium E0 = (1, 0) is globally asymptot-
ically stable if R0 ≤ 1 and unstable if R0 > 1.
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Proof. Consider the Lyapunov function defined by L(z) such that: L(t) =
i(t). Its derivative along solutions to the system (3) is

L′ = i′(t) = βs(t)i(t)− ((1 − ε)λ+ τ + α)i(t) + σβr(t)i(t) + αi2(t)

= i(t)[βs(t) − ((1− ε)λ+ τ + α) + σβ(1− i(t)− s(t)) + αi(t)]

= i(t)[(1 − ε)λ+ τ + α)

(
β

(1− ε)λ+ τ + α
s(t)− 1

)

+σβ(1 − i(t)− s(t)) + αi(t)]

= i(t)[(1 − ε)λ+ τ + α) (R0s(t)− 1) + σβ(1− i(t)− s(t)) + αi(t)]

≤ i(t)[(1 − ε)λ+ τ + α) (R0 − 1)] ≤ 0,

if R0 ≤ 1. We have established that L′ ≤ 0, if R0 ≤ 1 and the equality,
L′ = 0 holds if R0 = 1 and i(t) = 0. If R0 > 1, then L′ > 0 when s(t) is
sufficiently close to 1 except when i(t) = 0. From the Lyapunov-LaSalle
Theorem [9], it follows that all the paths in T approach the largest positive
invariant subset of the set where L′ = 0 is {(s(t), i(t)) ∈ T | L′ = 0}.
On the boundary of T where i(t) = 0 (s(t)-axis), s′(t) = λ(1 − s(t) so
that s(t) = (1 + e−λt) → 1 as t → +∞. Thus all solution paths in T
will approach the disease-free equilibrium E0. Therefore, the disease-free
equilibrium E0 is globally asymptotically and this completes the proof of
Theorem 1.

3.2 Local and global stability of the endemic equilibrium E1

The Jacobian matrix evaluated at the endemic equilibrium E1 (s
∗(t), i∗(t))

is given by

JE1 =

⎡
⎣ −λ+ (α− β)i∗(t) −ελ+ (α− β)s∗(t)

(β − σβ)i∗(t) (β − σβ)s∗(t) + 2(α − σβ)i∗(t)− η

⎤
⎦ ,

where η = [(1 − ε)λ + τ + α − σβ]. From Eq. (6) and (β − σβ)s∗(t) +
(α−σβ)i∗(t)+σβ− [(1− ε)λ+ τ + α] = 0, we obtain the Jacobian matrix
given by

JE1 =

[ −λ+ (α− β)i∗(t) −ελ+ (α− β)s∗(t)
β(1 − σ)i∗(t) (α− σβ)i∗(t)

]
, (11)
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Let

J11 = −λ+ (α− β)i∗(t) = −λ+ (α− β)
−ψ

2ρ(α − β)
=

−(ψ + 2ρλ)

2ρ
.

J12 = −ελ+ (α − β)s∗(t) = −ελ+ (α− β)
[−2φ(α − β)− ψ]

−2(α− β)

=
1

2
[2φ(α − β) + ψ − 2ελ] =

1

2
ψ − ελ− φ(β − α).

J21 = β(1− σ)i∗(t) = (1− σ)β
−ψ

2ρ(α − β)
=
βψ(1− σ)

2ρ(β − α)
.

J22 = (α− σβ)i∗(t) = (α− σβ)
ψ

2ρ(β − α)
.

The Jacobian matrix (11) can thus be written as

JE1 =

⎡
⎣ J11 J12

J21 J22

⎤
⎦ ,

with

tr(JE1) = J11 + J22 =
−ψ − 2ρλ

2ρ
+ (α− σβ)

ψ

2ρ(β − α)

= −λ− ψ

2ρ
[(β − α) + (σβ − α)] .

det(JE1) = J11J22 − J12J21,

=
−(ψ + 2ρλ)

2ρ
(α− σβ)

ψ

2ρ(β − α)
− βψ(1− σ)

2ρ(β − α)

[
1

2
ψ − ελ− φ(β − α)

]

=
(ψ + 2ρλ)

2ρ
(σβ − α)

ψ

2ρ(β − α)
+
βψ(1 − σ)

4ρ(β − α)
[2(ελ+ φ(β − α)) − ψ] .

Since β > α, tr(JE1) < 0 and det(JE1) > 0 and the endemic equilibrium
E1 is a stable node.

Theorem 2. If R0 > 1, then the endemic equilibrium E1(s
∗(t), i∗)(t) is

globally asymptotically stable in the set T = {s(t), i(t) : s(t) > 0, i(t) >
0, s(t) + i(t) ≤ 1}.

Proof. Define the function φ(s, i) = i−1 for (s(t), i(t)) ∈ T , it follows that
there can not be limit cycles. It is noted that,

∂

∂s

(
s′

i

)
+
∂

∂i

(
i′

i

)
=

−λ
i

+ α− β + α− σβ < 0.
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Table 1: Parameter estimates for the model of brucellosis.

Symbol Biological meaning Value/day Ref.

λ Per-capita birth rate 0.00075 [27]
µ Per-capita death rate 0.00062 [27]
α Disease-related death rate 0.00001 [27]
ε Proportion of infected newborns 0.00165 [2]
b Intrinsic growth rate 0.00013 [27]
σ Rate at which treatment wanes off 0.00274 [27]
K Carrying capacity 100/sq mi Assumed

β Contact rate 0.00003-0.00009 Assumed

τ Treatment rate 0.001-0.005 Assumed

The conditions of the Bendixson-Dulac criterion are satisfied and system
(3) has no limit cycles in T . Thus by the Poincaré-Bendixson criterion,
the endemic equilibrium E1(s

∗(t), i∗(t)) is globally asymptotically stable in
T .

The global stability of the endemic equilibrium E1 is established by us-
ing Bendixson-Dulac criterion [10] to show that system (3) has no nontrivial
orbit in T .

3.3 Numerical simulation

Numerical simulations are done usingMatlab computer software program.
Parameter values given in Table 1 are obtained from epidemiological data
in the literature while other parameters are allowed to vary within the pos-
sible intervals. Some parameters vary from country to country, and some
are influenced by demographics, for instance, natural death rate, transmis-
sion/contact parameters, carrying capacity and treatment rate.

3.4 Variation of cattle population against time at various
values of contact rate β

The effect of contact rate on the dynamics of the bovine brucellosis is
studied for the following values of contact rates β = 0.00003, 0.00006 and
0.00009. It is observed that there is a drastic decrease in the number of
susceptible cattle when the contact rate is higher, and for a lower contact
rate, the susceptible cattle population reduces at slowly as shown in Figure
1a. For the infected cattle population as shown in Figure 1b, higher contact
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Figure 1: Changes in cattle population with time at various values of con-
tact rate β.

rate results in a higher number of infected cattle than at a lower contact
rate. The decline in the infected cattle population after some time is due to
treatment of the infected cattle. This indicates that contact rate has a great
effect on the transmission of the bovine brucellosis showing that for lower
contact rate, the prevalence of bovine brucellosis decreases. This confirms
the analytical results previously obtained on the basic reproduction number
R0, that the contact rate should be as low as possible if R0 is to be less
than one for the disease to die out.

3.5 Effect of varying treatment rate τ on different epidemi-
ological classes

The role of treatment on the dynamics bovine brucellosis is carried out at
different rates to show its effect on the different epidemiological classes. It is
observed in Figure 2 that when treatment rate is low, the susceptible cattle
population drops over time as the infected cattle population increases. It
later decreases because of continued treatment of infected cattle population
that recover increases. The decrease in the susceptible cattle population
is because the recovered cattle population due to treatment never become
susceptible again. The treatment temporally stops the disease symptoms as
the treated cattle remain in the recovered class. The treated cattle become
infected when they come into infectious cattle.

In Figure 3, it is observed that when the treatment rate is increase
to a higher value, the infected cattle population drops rapidly. Thus, high
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treatment rate reduces the infected cattle population whereas low treatment
rate leads to an increase in the infected cattle population.

Figure 2: Change in cattle population with time at treatment rate τ =
0.001.

Figure 3: Change in cattle population with time at treatment rate τ =
0.005.

4 Discussion and conclusion

Brucellosis is a contagious zoonotic disease that is transmitted to humans
through direct or indirect contact with infectious animals and consumption
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of contaminated animal products. Brucellosis in the cattle is transmitted
either horizontally and vertically.

In this paper, an SIR epidemic model is proposed to study the effect
of treatment of infected cattle on the transmission dynamics of brucellosis.
The model was analyzed for equilibrium points and their stability. The
basic reproduction number, R0 that describes the dynamics of the disease
was obtained. It was established that for R0 < 1, the disease free equi-
librium E0 is locally asymptotically stable and the disease dies out. But
when R0 > 1, the disease free equilibrium becomes unstable and the dis-
ease persists. The theory of Lyapunov function and Poincare were used to
establish the global stability of the disease-free and endemic equilibrium,
respectively. It was revealed that if R0 ≤ 1, then the disease-free equilib-
rium E0 is globally asymptotically stable. If R0 > 1, a unique endemic
equilibrium E1 is globally asymptotically stable in the interior of the fea-
sible region and the disease will persist at the endemic equilibrium if it is
initially present. The global stability of the endemic equilibrium E1 was
proved using the Poincaré-Bendixson theorem for 2-dimensional monotone
systems.

The basic reproduction number R0 is directly proportional to the pa-
rameter β and inversely proportional to the parameters α, τ and ε. Thus, in
order to reduce the basic reproduction number R0 below one, there is need
to focus on reduction of the contact rate β, proportion of newborns (from
infected mothers) that are infected ε and increase on the removal rate τ of
the infectious cattle. This can be achieved by isolating any cow that aborts
and then treating it and also ensuring that delivering animals are attended
to by veterinary workers. Thus, there is need to conduct massive awareness
campaigns in order to sensitize farmers on the significance of testing any
animal that aborts and getting treatment from veterinary workers.
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