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Abstract

Maternal mortality remains a significant global public health
challenge. One promising approach to reducing maternal
deaths occurring during facility-based childbirth is through
early warning systems, which require the consistent monitor-
ing of mothers’ vital signs after giving birth. Wireless vital
sign monitoring devices offer a labor-efficient solution for
continuous monitoring, but their scarcity raises the critical
question of how to allocate them most effectively. We devise
an allocation algorithm for this problem by modeling it as a
variant of the popular Restless Multi-Armed Bandit (RMAB)
paradigm. In doing so, we identify and address novel, pre-
viously unstudied constraints unique to this domain, which
render previous approaches for RMABs unsuitable and sig-
nificantly increase the complexity of the learning and plan-
ning problem. To overcome these challenges, we adopt the
popular Proximal Policy Optimization (PPO) algorithm from
reinforcement learning to learn an allocation policy by train-
ing a policy and value function network. We demonstrate in
simulations that our approach outperforms the best heuristic
baseline by up to a factor of 4.

1 Introduction
Each year, more than 250, 000 women lose their lives dur-
ing and following pregnancy and childbirth (World Health
Organization 2024), with the first 24 hours post-delivery be-
ing particularly perilous (Li et al. 1996; Dol et al. 2022).
A significant contributing factor to this tragic statistic is the
poor quality of care available in under-resourced communi-
ties (Crear-Perry et al. 2021). Consequently, there is grow-
ing interest in different ways of improving peripartum care
to prevent life-threatening complications such as hemor-
rhage, hypertensive disorders, and sepsis. One key approach
is through the monitoring of maternal vital signs, which can
be used to identify complications early on via early warn-
ing systems that provide an opportunity for timely clinical
intervention (Vousden et al. 2019).

In fact, the World Health Organization (2016) recom-
mends close monitoring of maternal vital signs in the first 24
hours after birth, thereby highlighting the importance of ma-
ternal vital signs in high-quality maternal care. Traditionally,
this monitoring is conducted by healthcare providers who
manually measure vital signs at regular intervals. However,
even in well-resourced settings, the recommended monitor-

Figure 1: Wireless vital sign monitoring device on the arm
of a mother.

ing frequency poses a substantial burden. In resource-limited
settings, meeting these guidelines has been very difficult to
achieve (Mugyenyi et al. 2021; Semrau et al. 2017).

An automated alternative to measuring vital signs is the
use of wearable or wireless vital sign monitoring devices,
often in the form of wireless biosensors; see Figure 1 for a
picture of such a device (Boatin et al. 2016, 2023). These
sensors continuously measure and transmit the mother’s vi-
tal signs, with the option to trigger alerts if abnormalities
in vital signs are detected. These alerts provide the op-
portunity for clinicians to initiate appropriate medical re-
sponses in real time when needed. Thus, automated vital
sign monitoring using wireless biosensors provides an op-
portunity to implement early warning systems in resource-
constrained environments, where to date, human resource
constraints have limited the ability to check vital signs con-
sistently. Such systems have been demonstrated to be func-
tional and acceptable in these settings (Boatin et al. 2016;
Ngonzi et al. 2017). However, in practice, while these mon-
itoring devices enhance human resources, their availability
will still be severely limited, leading to the central research
question addressed in this paper: Who should wear a moni-
toring device and for how long?

While our research is motivated by several hospital set-
tings in Uganda and Ghana, the specific motivation for
this study comes from the Department of Obstetrics and
Gynecology at the Mbarara Regional Referral Hospital in
Mbarara, Uganda. With approximately 9000 deliveries an-
nually, this hospital serves as the primary referral center for
southwestern Uganda. It has been piloting the use of wire-
less vital sign monitors during the critical 24 hour period
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after birth (Boatin et al. 2021, 2023; Mugyenyi et al. 2021).
We tackle the problem of allocating monitoring devices

by framing it as an instance of the popular restless multi-
armed bandit (RMAB) model. This model has been suc-
cessfully applied to distribute limited resources in differ-
ent healthcare contexts (Ayer et al. 2019) as well as in ar-
eas beyond healthcare, such as anti-poaching (Qian et al.
2016) and machine maintenance (Abbou and Makis 2019).
However, unique challenges arise in our application, ren-
dering existing solution methods inadequate. Specifically,
in contrast to classic RMAB problems, our allocation set-
ting places several novel constraints on the allocation, for
instance, each mother must be allocated a device for a mini-
mum and maximum duration, and once a device is removed
from a mother, it cannot be (easily) reassigned to her at a
later point (see Section 2). Furthermore, currently, no histor-
ical data or other relevant features of arriving mothers are
available to the algorithm in the intended deployment set-
ting. Consequently, the decision of when to remove a device
after the minimum monitoring period must be based solely
on the mother’s so-far recorded vital signs. Therefore, our
algorithm learns in an online manner, leveraging informa-
tion collected from previously monitored mothers to make
decisions for new ones. To address these challenges, we
adopt the Proximal Policy Optimization (PPO) algorithm,
a reinforcement learning technique that has proven effec-
tive in diverse domains (Schulman et al. 2017) such as video
games (Kristensen and Burelli 2020), robotics (Melo, Melo,
and Maximo 2021), and autonomous vehicles (Guan et al.
2020). Our approach leverages PPO’s strengths in learning
robust policies under complex constraints and dynamic en-
vironments. In sum, our main contributions are:

• We are the first to identify and formalize the algorithmic
problem of allocating scarce wireless vital sign monitor-
ing devices, with novel real-world constraints previously
unstudied by the resource allocation literature.

• We develop a modern reinforcement learning-based al-
gorithm to learn and make allocation decisions in real
time using RMABs, contributing to both the application
domain and extending the RMAB literature.

• We demonstrate in simulation that our algorithm signifi-
cantly outperforms natural heuristic baselines, achieving
improvements ranging from 100% to 400%, which gives
a good indication of the usefulness of AI approaches for
this problem. Moreover, we conduct a first analysis on
limited data from the Mbarara Regional Referral Hospi-
tal and describe the next steps toward responsible real-
world AI deployment, including additional data collec-
tion, quality control, ethics reviews, and field trials.

Related Work on RMABs There is a rich body of work
on devising allocation algorithms for scarce resources using
the restless bandits model. Different variants of this model
have been studied, differing in the information available to
the planner (Chen and Hou 2024), the constraints on budget
usage (Rodriguez-Diaz et al. 2023; Li and Varakantham
2022), and resource allocation strategies (Mao and Perrault
2024). The work of Mate et al. (2022) studies streaming

restless multi-armed bandits, where arms appear and disap-
pear over time, which is also the case in our problem. The
primary distinction between their setting and ours lies in
their assumption that arms have discrete states with known
transition dynamics, whereas in our problem, transition
dynamics are unknown and states are not restricted to
being discrete. Moreover, we have additional constraints
placed on the allocation. In contrast, the work of Zhao et al.
(2024) proposes a reinforcement learning-based solution for
streaming bandits where transition dynamics are unknown
and states consist of a single continuous value. However,
their method is not applicable to our setting, as it cannot
accommodate the additional allocation constraints specific
to our problem (specifically, the lambda network they
use is incompatible with constraints beyond the standard
budget one). Moreover, their approach relies on feature
information that is unavailable in our context and is limited
to simpler state spaces, which do not adequately capture the
complexity of vital sign profiles (see Section 2).

2 Application, Modeling, and Challenges
2.1 Application Details
We outline the characteristics of the problem encountered
in our application domain. Our setting is the maternity unit
of the Mbarara Regional Referral Hospital (Boatin et al.
2021, 2023): Mothers arrive at the maternity unit and de-
liver throughout the day. After delivery, mothers remain in
the maternity unit for some time before being redirected to
other care measures or discharged. Mothers will wear a mon-
itoring device during some time they spend in the unit.

Wearing a monitoring device has no direct impact on the
mother’s vital signs or health. However, there is a clear in-
direct impact: If a monitored vital sign deviates from the
preset normal range, an alert is sent to the responsible clin-
ician’s phone. While some alerts may be disregarded due to
capacity constraints or other factors, in most cases, the clin-
ician will visit the patient, manually assess any abnormal
vital signs, and initiate appropriate clinical interventions if
needed. These interventions are expected to positively influ-
ence the mother’s health and stabilize her vital signs.

There are several external constraints imposed on the al-
location of monitoring devices. First, every mother should
wear the device for a minimum duration, for instance, the
initial two hours after birth, which are particularly high-risk.
Second, once a device is removed from a mother, it cannot be
(easily) reassigned to her, as she will transition to a different
set of care protocols. Third, each mother is only eligible to
wear the device for the first 24 hours after birth, as this is the
targeted monitoring period for the program. No feature in-
formation about the mother—such as demographic details or
historical medical data—is available to the algorithm, con-
stituting a safeguard for data privacy.1 Consequently, the de-
cision when to remove the device from a mother after her

1We note that in some hospitals such information exists on pa-
per and could be digitalized if needed. However, an algorithm that
does not require features and historical data is naturally much eas-
ier to deploy and preferable from a privacy and safety perspective.
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minimum monitoring period has ended must be made purely
based on her previously recorded vital signs.

The objective of the allocation strategy is to minimize oc-
curring complications and maintain the vital signs of all pa-
tients—whether they are wearing a device or not—within
the normal range during their stay in the maternity unit. This
implies that patients at higher risk of developing abnormal
vital signs indicating potential complications should be pri-
oritized: For them, a monitoring device will trigger alerts
and prompt the needed timely clinical assistance.

2.2 Formal Modeling & Challenges
We model the problem of allocating monitoring devices us-
ing the popular RMAB framework. An instance of our prob-
lem consists of a planning horizon T , a budget B (the num-
ber of available devices), a discount factor γ, a minimum
tmin and maximum tmax number of steps a mother should
be monitored, and a set N of mothers (from now on called
arms). Each arm i ∈ N follows a Markov Decision Process
(Si,Ai = {0, 1},Γi, Ri). Si represents the possible states
of arm i. In our application, states are multidimensional and
continuous and include the current values of the vital signs,
along with potentially aggregated statistics like the variabil-
ity of each vital sign over recent time steps. Ai = {0, 1}
represents the actions, where 0 denotes the passive action
and 1 denotes the active action, i.e., allocate a device to the
mother. Γi describes the parameters characterizing how arm
i’s state evolves from one step to the next conditioned on the
taken action.2 Ri : Si → R is the reward function of arm i,
penalizing states where vital signs fall significantly outside
the normal range, indicating potential complications. Addi-
tionally, each mother has an arrival αi ∈ [T ] and departure
time βi ∈ [T ]. We assume that the state space S and reward
function R are the same for each arm and are known. In con-
trast, Γi is arm-specific and unknown. Additionally, αi and
βi are also arm-specific and are revealed at the correspond-
ing timestep. At each timestep t ∈ [T ], an arm i is present
if t ∈ [αi, βi]. Let Nt be the set of arms present at time t.
The goal is to learn a policy π that maps the set of currently
present arms and their current states s ∈ S |Nt| to an action
vector a ∈ {0, 1}|Nt|, such that for each t ∈ [T ] and i ∈ Nt:

1.
∑

j∈Nt
aj ≤ B,

2. ai = 1 if t ∈ [αi, αi + tmin − 1] ,
3. ai = 0 if t > βi or t ≥ αi + tmax, and
4. ai = 0 if there is some step t′ ∈ [αi, t] in which i was

assigned the passive action.

The goal is to find such a policy that max-
imizes the accumulated discounted reward:

2For example, transitions of continuous states might follow
multivariate Gaussian distributions (see Section 4.1), with separate
distributions for the active and passive action. Then, Γi contains
the distributions’ mean and covariance matrix. In many states, ap-
plying the active action (i.e., allocating a device) will not alter the
transition dynamics unless an alert is triggered. Nonetheless, it is
beneficial to continue monitoring such arms as they may transition
into critical states later on where alerts are generated and the tran-
sition dynamics are impacted by the active action.

∑
t∈[T ] γ

t−1Es∼(N,π)

∑
i∈Nt

R(si). Note that due to
the allocation constraints, allocation decisions only need
to be made when a new arm arrives. At that moment, the
algorithm must assign the active action to the new arm (due
to the minimum monitoring period). The “only” decision
the algorithm needs to make is which arm should be flipped
from the active to the passive action, i.e., from which mother
we take the monitoring device needed for the new mother.

Novel Challenges Our problem introduces three novel as-
pects that set it apart from existing work in restless bandits:

• The standard assumption in the restless bandit literature
is that states are few and discrete, which simplifies tran-
sition dynamics (Niño-Mora 2023). However, vital signs
evolve in complex, continuous ways, prohibiting the dis-
cretization of the state space. Further, patient’s states are
characterized by multiple continuous vital sign values
plus statistics about their trajectory.

• Existing works on RMABs with unknown transition
probabilities typically rely on arm’s feature information
to learn their dynamics. In our context, no such features
are available, forcing the algorithm to estimate an arm’s
future behavior based solely on its current state.

• To our knowledge, allocation constraints 2-4 from above
are important for many monitoring applications but have
not been previously explored in the RMAB literature.

3 Methodology
To address the novel challenges arising in our application
domain, we employ an actor-critic approach using Proxi-
mal Policy Optimization (PPO) for policy updates, which
is widely used in reinforcement learning. Our algorithm re-
quires access to a simulator “Simulate(i, si, ai)” of the envi-
ronment that takes as input an arm, its current state, and its
action and outputs the new state of the arm. The idea is to
train a policy using Algorithm 1 which has access to the sim-
ulator and then deploy the learned policy in the real-world,
which ensures the required high-quality decision-making
from the start (Zhao et al. 2024).

The actor is a policy neural network that takes as input
the current state of an arm and outputs the action probability
for both possible actions. We let θ(a | s) denote the action
probability for action a ∈ {0, 1} returned by the network
on input s ∈ S. We act on the arms with the highest proba-
bility for the active action. Thus, the output of this network
determines which arms are assigned the active action. The
critic is another neural network that takes as input the state
s ∈ S of an arm and outputs the baseline estimate V (s),
which is the expected total discounted reward generated by
this arm starting from state s assuming that actions are taken
following the action probabilities returned by the policy net-
work. The critic network is used for updating the policy net-
work via the PPO algorithm. Importantly, both networks are
shared among all arms, enabling arms to learn from each
other—this is crucial because each arm remains in the sys-
tem for only a limited time.

Algorithm 1 proceeds in multiple epochs. For training
purposes, each epoch deals with a separate set of arms.
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Algorithm 1: RL-based allocation algorithm

1: Input: nepoch instances of our problem.
2: Initialize actor θ and critic ϕ
3: for each of the nepoch instances do
4: for t = 1, . . . , T do
5: Let Nnew

t := {i ∈ Nt | αi + tmin < t}
6: Assign the active action to all arms from Nnew

t

7: Let N eligible
t be the set of all arms i ∈ Nt with

αi + tmax ≤ t and which have never been assigned the
passive action since it arrived in step αi

8: Use policy network to compute action probabil-
ity θ(ai | si) for each arm i ∈ Nt

9: Assign the active action to the B− |Nnew
t | arms

from N eligible
t \ Nnew

t with the highest active action
probability θ(1 | ·)

10: for i ∈ Nt do
11: s′i = Simulate(i, si, ai)
12: Add tuple (si, ai, R(si), s

′
i) to buffer

13: si ← s′i
14: Update actor-critic (θ, ϕ) pair via PPO using buffer

Within each epoch, a fixed policy is used to make the al-
location decisions while respecting all constraints. The be-
haviors of all arms are observed and stored in a buffer. At
the end of each epoch, we use the buffer to update the policy
and critic networks, thereby refining the policy.

Breaking down Algorithm 1, in Lines 5–9, the algorithm
assigns actions to all present arms: In Line 6, the algorithm
assigns the active action to all arms that have been in the sys-
tem for less than tmin steps, as they have not been monitored
for the required minimum time. In Line 9, the remaining ac-
tive actions are assigned to the arms eligible for receiving an
active action in this step with the highest action probability
returned by the policy network. Then, in Line 11, we simu-
late the next state of each arm conditioned on the assigned
action and update its state accordingly in Line 13.

The policy and critic networks are updated following the
principles of the PPO algorithm (Schulman et al. 2017).
Specifically, let V (s)j be the values returned by the critic
network at the end of epoch j. We compute the advantage
function Aj(s, a) for epoch j, s ∈ S and a ∈ {0, 1}, which
quantifies the benefit of taking a certain action a in state s
compared to the current policy as Aj (s, a) = Qj (s, a) −
V j (a), where Qj(s, a) is the expected discounted cumula-
tive reward for the completion of the current episode under
the current policy for an arm in state s to which action a is
applied in this step. The advantage function is then incor-
porated into the actor’s policy gradient to update the policy
network in the actor, following the standard PPO procedure.

When running the algorithm in testing, we execute Lines
4 to 13 with the trained policy network.

4 Experiments
We present our experiments using data from a publicly ac-
cessible de-identified vital sign database, which offers rich
and high-quality data for conducting comprehensive experi-

ments. The goal of this section is to demonstrate the general
capabilities of our algorithm to distribute vital sign monitor-
ing devices; we revisit our initial use case of maternal care in
Section 5. All experiments are conducted in simulation; our
algorithm is only applied to simulated vital sign profiles. In
Section 4.1, we describe our setup, including the datasets
used, the instance generation, the trained simulator, and the
baselines employed. In Section 4.2, we present and analyze
our results.

4.1 Setup
Domain The experiments in this section are based on data
from the widely used MIMIC-III (Johnson et al. 2016) and
MIMIC-IV (Johnson et al. 2023) datasets, which have be-
come popular and influential in computer science research.
Both datasets contain de-identified clinical data from thou-
sands of patients who stayed in critical care units at Beth Is-
rael Deaconess Medical Center in Boston over different pe-
riods, including vital sign measurements typically recorded
at one-hour intervals. In our experiments, each arriving arm
corresponds to a new patient entering the critical care unit.
For MIMIC-III, we use the vital signs (i) heart rate, (ii) speed
of breathing (respiratory rate), and (iii) blood oxygen satu-
ration (SPO2), while for MIMIC-IV, we use (i) heart rate,
(ii) respiratory rate, and (iii) skin temperature. We normalize
each vital sign between 0 and 1 using min-max normaliza-
tion. For each patient, we take the median vital sign value at
each hour. Thus, one timestep corresponds to one hour. We
exclude patients with fewer than 10 data points.

Simulator The state representation of patients includes,
for each vital sign, its current value and the variance of the
value over the last five timesteps. The reward function as-
signs a reward of 0 if all vital sign values fall within the
normal range. For each abnormal vital sign, we incur a neg-
ative reward that shrinks exponentially with the extent of the
deviation from the normal range.3 The exponential penalties
model the increasing severity associated with larger devia-
tions from the normal range.

The patient’s behavior is governed by a multivariate Gaus-
sian distribution defined over the vital sign values in the cur-
rent step and in the next step. We sample the initial state of
a patient from this distribution by taking a sample and using
only the sampled vital sign values in the current step. Under
the passive action, the next state is sampled from the con-
ditional distribution of the Gaussian, given the current state.
Under the active action, we make a case distinction. If all vi-
tal signs are within the normal range, the state transitions as
under the passive action since no alert is triggered, and the
device does not influence the patient’s trajectory. If any vital
sign is abnormal, with a probability of 30%, the state tran-
sitions as under the passive action (modeling cases where
clinicians do not respond to the alert, which occur approxi-
mately 30% of the time in the study by Boatin et al. (2021,
2023)). Otherwise, the abnormal vital signs are probabilisti-
cally adjusted towards the normal range before sampling the

3Our definitions of the abnormality thresholds for each sign
largely follow (Boatin et al. 2021). See Appendix A for details.
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next state, reflecting the positive effects of clinical interven-
tion following an alert (see Appendix A for details).

4.2 Results
Instances We set T = 100, tmin = 3, tmax = 25, and
assume that patients leave 50 steps after they join. We vary
the budget B. Initially, there are B patients, and every five
steps new patients join. We report the number of patients N ,
which describes the “typical” number of patients in the sys-
tem. The inner workings of our instances are best understood
by looking at a concrete example: Let us consider B = 3 and
N = 20. Initially, there are B = 3 patients, and every five
timesteps, two (i.e., N/10) new patients arrive. Since each pa-
tient leaves 50 steps after they join and every five steps two
patients arrive, the number of patients in the system gradu-
ally grows to 20 and stabilizes at 20. Importantly, at every
point at which the algorithm makes an allocation decision,
there are only few patients to pick from. In this instance,
there are five: two (i.e., N/10) newly arriving patients and
three (i.e., B) existing patients who currently hold a device.

It remains to describe how we sample patients’ transition
parameters. For this, we fit a weighted mixture of five
multivariate Gaussians (i.e. five components) on the dataset,
where we partition all trajectories into tuples that include
the vital signs in the current and next step. When we sample
a patient, we first select a component from the Gaussian
mixture based on the component’s weights. This determines
the initial mean and covariance of the patient. To introduce
variability, we linearly combine this mean and covariance
with those of another randomly selected component, using
a weight uniformly sampled between 0 and 0.15.

Baselines We refer to NoAction as the policy that does
not allocate any monitoring devices. All other baselines re-
spect the allocation constraints. Recall that this means that
they only need to make a decision if a new patient appears.
Then, the algorithm needs to decide from which patient cur-
rently holding a device and having already been monitored
for tmin steps, we remove the device.
• Random: Randomly selects a patient.
• Extreme Values: Selects the patient with the least ab-

normal vital signs, i.e., the patient with the lowest
summed normalized vital sign values (where SPO2 is in-
verted, as lower values indicate abnormality).

• Highest Variability: Selects the least stable patient,
i.e., the patient with the highest summed variance of vital
signs over the past five steps.

Extreme Values is particularly intuitive, as it allocates the
devices to the patients generating the lowest reward.

Training and evaluation For each considered setting, we
average our results over 100 seeds. For each seed, we do the
following: We train our algorithm for nepoch = 50 epochs.
At the beginning of each epoch, we create a new instance by
sampling a fresh set of N arms. Subsequently, we evaluate
the trained policy along with various baselines on 50 newly
generated instances and compute the average rewards. Both
in testing and evaluation, patients transition according to the
simulator as described in Section 4.1.

Results See Figure 2 for an overview of our experimental
results, where we vary the budget B and the number of
patients N and see Table 2 in Appendix B for results from
additional settings. We report the reward averaged over 100
randomly generated seeds, where we normalize the reward
of our algorithms and heuristics by subtracting from it the
reward of the No Action baseline and then dividing by N .
Consequently, the reported values capture the benefit of the
allocated monitoring devices. We observe that our method
outperforms the baselines across all examined settings.
Notably, when B = 3 and N = 20, we outperform the
second-best baseline by 433% and 173% on the MIMIC-II
and MIMIC-IV datasets, respectively; when B = 6 and
N = 50, we outperform the second-best baseline by
431% and 141% on the MIMIC-III and MIMIC-IV data,
respectively. Interestingly, the intuitive Extreme Values
and Highest Variability baselines perform worse than
Random. The fact that both baselines are insufficient high-
lights the complexity and intricacy of our problem and mo-
tivates the necessity for a more intricate approach like ours.

In Appendix B.3, we analyze how the vital signs influence
the allocation decisions made by the algorithm. We observe
that most reassignments happen when a patient’s vital signs
are within a medium range and have low variability.

5 Maternal Care in Mbarara: Initial Results
We revisit the specific application of maternal care in
Mbarara discussed in Section 2.1. We have access to con-
tinuous vital sign measurements from 100 patients collected
using monitoring devices at the Mbarara Regional Referral
Hospital.4 As in Section 4, we discretize the trajectories into
60-minute intervals by taking the median value of each vital
sign recorded during the interval. The vital signs we consider
are: (i) heart rate, (ii) respiratory rate, (iii) and blood oxygen
saturation (SPO2). The rest of the setup is as in Section 4.

Note that we can only fit the simulator on the 100 patients’
traces available to us (we are working closely together with
Mbarara University of Science and Technology to collect
more data and build a more powerful simulator). As a result,
the patients’ behaviors captured by the simulator are quite
simple and less stable compared to the much larger MIMIC
datasets. In the absence of complex patterns and interactions
in the vital signs generated by the simulator, simpler algo-
rithms (e.g., the random strategy) are expected to show im-
proved behavior. A key question we wish to address in this
section is whether the limited dataset already provides ev-
idence that a purely random strategy is insufficient and a

4These trajectories were collected as part of a hybrid
effectiveness-implementation trial of a wearable vital sign moni-
tor among post-cesarean women. Women in this trial consented to
wear the monitor for 24 hours. Ethics approval for this trial was
obtained from the Mbarara University of Science and Technology
Research Ethics Committee (17/10-18), the Uganda Council of Sci-
ence and Technology (HS417ES) and the MassGeneralBrigham In-
stitutional Regulatory Board (2019P000095). The trial was regis-
tered at clinicaltrials.gov (NCT04060667). We use the previously
collected vital sign trajectories from trial participants to develop a
simulator, however, vital sign data generated in these simulations
do not represent and cannot be traced to real participants.
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Figure 2: Results on MIMIC-III (top) and MIMIC-IV (bottom), averaged over 100 random seeds for varying budget B and
number of patients N . The error bars show the standard error of the generated reward, which is normalized by subtracting the
reward of the No Action baseline and then dividing by N . See Table 2 in Appendix B for additional experimental results.
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Figure 3: Initial results on data from the Mbarara Hospital,
averaged over 100 random seeds. The error bars show the
standard error of rewards, which are normalized by subtract-
ing the reward of the No Action baseline and then dividing
by N (see Appendix B for additional settings).

more involved approach is needed?
Figure 3 shows the results in three different settings.

We observe that our method significantly outperforms the
Random as well as the Highest Variability strategies.
Furthermore, while the difference with the second-best
Extreme Values is not statistically significant, there is still
a trend of our algorithm showing superiority, as it outper-
forms this second-best baseline by 29% and 20% for settings
(B = 3, N = 20) and (B = 7, N = 40), respectively. In
light of the results from Section 4.2, we expect these dif-
ferences to grow significantly if we add additional training
data for the simulator and in real-world deployment.Thus,
our results provide a first evidence for the advantages of our
method in the maternal care domain.

6 Path to Deployment
While our experiments demonstrate the potential of using
RL-based algorithms for allocating monitoring devices, sev-
eral important steps remain before real-world deployment.
We are currently planning to collect additional vital sign tra-
jectories in the Mbarara Regional Referral Hospital based
on which we want to refine our model, especially regard-
ing the impact of wearing a device. Once the simulator is
trained on a larger and more diverse dataset, we will conduct
a rigorous evaluation of the simulator and the learned pol-
icy, including assessing potential biases, verifying robust-
ness to distribution shifts in patient populations, and making
necessary adjustments. Once the policy’s decision-making is
thoroughly validated, we will proceed with obtaining ethics
and regulatory approval to test the policy in a real-world set-
ting. Recall that, as a safeguard for data privacy, no feature

information about the mother is available to the algorithm.
Next, we will run a first trial in the Mbarara Regional Refer-
ral Hospital to test the implementation pipeline, safety, and
acceptability of our method, and to conduct a preliminary
analysis of its effectiveness. Assuming this study meets pre-
defined milestones regarding feasibility, acceptability, and
safety, the final phase consists of a comprehensive evalu-
ation through a randomized controlled trial (RCT) in multi-
ple hospitals. At the conclusion of a successful RCT, we will
focus on the careful, responsible deployment of our system.
Throughout this entire path to deployment, we will maintain
a very close collaboration with domain experts and agen-
cies to thoroughly check for biases, and ensure steps to-
wards a responsible deployment. Additionally, we plan to
explore the broader application of RL-based algorithms in
other post-surgical care settings where monitoring devices
can be used to improve patient outcomes.

7 Conclusion
We identified the problem of distributing wireless vital sign
monitoring devices—particularly relevant in peripartum ma-
ternal care—as a novel resource allocation challenge. We in-
troduced an RMAB-style model for this problem, which dif-
fers from previously studied models in several key aspects.
Our experiments demonstrate that our RL-based allocation
algorithm enables more efficient use of limited monitoring
devices. There are several promising directions for future
research. The first is the path outlined in Section 6. Be-
yond this, the unique characteristics of our setting motivate
the study of new variants of RMAB models. For instance,
it would be interesting to develop algorithms with per-
formance guarantees for traditional RMAB settings where
arms’ MDPs are discrete and known but some of our allo-
cation constraints must be respected. Our application also
raises additional algorithmic questions. One notable chal-
lenge is optimizing the design of alerts sent by monitoring
devices: While sending more alerts increases the likelihood
of an alert being sent before or during a complication, it also
increases the burden on clinicians and reduces their respon-
siveness to each individual alert. An intricate challenge for
future work is determining optimal thresholds for vital sign
alerts that strike the right balance between timely detection
of complications and minimizing alert fatigue.
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A Simulator Details
Normal Vital Sign Range To define the normal range, we primarily follow the thresholds used for alerts signaling abnormal
vital sings in the study on vital sign monitoring devices for maternal health in Mbarara (Boatin et al. 2021) featured earlier:
A heart rate above 120, a temperature above 38C, a respiratory rate above 30, and an SPO2 rate below 90 are considered
abnormal. Unlike (Boatin et al. 2021), we only use one-sided thresholds here, as our current pipeline is limited to monotonic
reward functions.

Reward Function For a heart rate h, the penalty is − exp (|h−120|/17). For a temperature t, the penalty is − exp (|t−38.0|/2).
For a respiratory rate r, the penalty is − exp (|r−30|/5). For an SPO2 s, the penalty is − exp (|s−90|/4).

Effect of Intervention The following describes what happens to each abnormal vital sing of a patient currently wearing a
device that is examined by a doctor (70% probability). For skin temperature, we reduce it by a sample from a normal distribution
with mean 1.5 and standard deviation 0.5; for pulse rate, we sample from a distribution with mean 15 and standard deviation 5;
for respiratory rate, we sample from a distribution with mean 10 and standard deviation 3.33. For SPO2, we increase the value
by a sample from a normal distribution with mean 3 and standard deviation 1.

B Additional Experimental Results
In this section, we provide additional experimental results.

B.1 Implementation Details of Algorithm 1

hyperparameter value

Number of hidden layers in policy network 2
Number of neurons per hidden layer 16
agent clip ratio 2
start entropy coeff 0.5
end entropy coeff 0
actor learning rate 2.0e-03
critic learning rate 2.0e-03
trains per epoch 20
discount factor 0.9

Table 1: Hyperparameter values.

B.2 Results for MIMIC Dataset

B N
MIMIC-IV MIMIC-III

Ours Random Extreme Val High Var Ours Random Extreme Val High Var

b = 3 20 5.73 ± 1.16 2.1 ± 1.14 1.86 ± 1.11 1.45 ± 0.88 5.44 ± 1.08 1.02 ± 1.1 0.71 ± 1.07 0.73 ± 0.93
b = 4 20 4.2 ± 0.94 2.82 ± 0.93 2.1 ± 0.91 2.1 ± 0.93 5.85 ± 1.46 1.29 ± 1.31 0.63 ± 1.3 0.57 ± 1.04
b = 5 20 4.88 ± 1.13 3.41 ± 1.12 2.25 ± 1.11 2.52 ± 1.0 6.43 ± 1.43 1.59 ± 1.38 1.04 ± 1.36 1.27 ± 1.09

b = 4 30 4.82 ± 1.07 1.82 ± 0.98 1.56 ± 0.97 1.45 ± 0.82 6.07 ± 1.04 1.12 ± 1.04 0.87 ± 1.02 0.7 ± 0.96
b = 5 30 4.09 ± 0.83 2.42 ± 0.79 1.77 ± 0.77 1.77 ± 0.69 5.29 ± 0.83 1.17 ± 0.82 0.71 ± 0.8 0.57 ± 0.77
b = 6 30 5.09 ± 0.96 2.73 ± 0.91 1.73 ± 0.9 1.91 ± 0.8 5.94 ± 1.16 1.38 ± 1.11 0.68 ± 1.09 0.84 ± 0.91

b = 5 40 4.28 ± 0.73 1.72 ± 0.74 1.47 ± 0.73 1.33 ± 0.54 5.77 ± 1.07 0.95 ± 1.04 0.5 ± 1.02 0.66 ± 0.94
b = 6 40 3.81 ± 0.71 1.89 ± 0.71 1.43 ± 0.71 1.41 ± 0.58 6.14 ± 1.15 0.86 ± 1.11 0.35 ± 1.11 0.64 ± 0.96
b = 7 40 4.84 ± 0.77 2.39 ± 0.73 1.61 ± 0.72 1.63 ± 0.64 5.3 ± 1.17 1.1 ± 1.13 0.71 ± 1.12 0.82 ± 1.05

b = 6 50 3.71 ± 0.68 1.54 ± 0.65 1.23 ± 0.64 1.15 ± 0.63 5.3 ± 1.03 0.84 ± 1.0 0.62 ± 0.99 0.69 ± 0.87
b = 7 50 4.01 ± 0.63 2.01 ± 0.66 1.33 ± 0.65 1.32 ± 0.52 4.52 ± 1.12 0.68 ± 1.1 0.46 ± 1.1 0.43 ± 1.04
b = 8 50 3.97 ± 0.7 2.16 ± 0.72 1.44 ± 0.71 1.53 ± 0.55 4.76 ± 1.09 1.01 ± 1.08 0.54 ± 1.06 0.63 ± 0.95

Table 2: We present average and standard error of return over 100 random seeds.

8



Figure 4: Cumulative Distribution Function (CDF) of the number of arms based on the number of active times (Action 1) in the
MIMIC dataset. The plot shows the probability distribution of arms being active a certain number of times.

B.3 Additional Results for Our Method
Figure 4 demonstrates the Cumulative Distribution Function (CDF) of arm numbers in relation to the number of times they
were active (Action 1) within the Minic dataset. The step-like nature of the CDF reflects the probability distribution across the
range of active times, showing a gradual increase in cumulative probability as the number of active times grows, ultimately
reaching 1.0. Notably, all arms have an active action duration larger than the minimum threshold (t min = 3), and 83.7% of the
arms exhibit an active action duration of less than the maximum threshold (t max = 25).

The analysis in Figure 5 reveals the impact of different state dimensions on the decision to reassign devices from patients who
already have them for the MIMIC dataset. Specifically, the first three dimensions, i.e., PULSE RATE, RESPIRATORY RATE,
and COVERED SKIN TEMPERATURE, show that a medium value of these three vital signs significantly increases the likeli-
hood of device reassignment. In contrast, the last three dimensions, representing the variation in vital signs, indicate that lower
variability is more likely to lead to a transition from active to passive action, thus triggering the device reassignment.

Notice that we observe a very similar behavior of our proposed algorithm in Uganda dataset as shown in Figures 6 and
7. Nevertheless, since Uganda data set has a different vital sign of SPO2, rather than COVERED SKIN TEMPERATURE as
in MIMIC dataset, the analysis in Figure 5 reveals a slightly different result. Specifically, the first dimension, SPO2, shows
that a higher SPO2 value significantly increases the likelihood of device reassignment. For the second and third dimensions,
PULSE RATE and RESPIRATORY RATE, medium values are more likely to trigger reassignment. Similarly, the last three
dimensions, representing the variation in vital signs, indicate that lower variability is more likely to lead to a transition from
active to passive action, thus triggering the device reassignment.
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Figure 5: Analysis of the critical state dimensions that influence the decision to remove a device from a patient under the MIMIC
dataset. The six state dimensions considered are PULSE RATE, RESPIRATORY RATE, COVERED SKIN TEMPERATURE,
and variations of each vital sign. The histograms depict the distribution of state values before the transition from active to passive
action, highlighting which factors might be most influential in triggering the change.

Figure 6: Cumulative Distribution Function (CDF) of the number of arms based on the number of active times (Action 1) in the
Uganda dataset. The plot shows the probability distribution of arms being active a certain number of times.
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Figure 7: Analysis of the critical state dimensions that influence the decision to remove a device from a patient under the
Uganda dataset. The six state dimensions considered are SPO2, PULSE RATE, RESPIRATORY RATE, and variations of each
vital sign. The histograms depict the distribution of state values before the transition from active to passive action, highlighting
which factors might be most influential in triggering the change.
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Figure 8: Additional results on data from Mbarara, averaged over 100 random seeds. The error bars show the standard error of
rewards. Rewards are normalized by subtracting the reward of the No Action baseline and then dividing by N .
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