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Abstract— Cervical cancer ranks as the fourth most prevalent cancer affecting women worldwide and its early detection provides 
the opportunity to help save life. Automated diagnosis of cervical cancer from pap-smear images enables accurate, reliable and 
timely analysis of the condition’s progress. Cell segmentation is a fundamental aspect of successful automated pap-smear analysis. 
In this paper, a potent approach for segmentation of cervical cells from a pap-smear image into the nucleus, cytoplasm and back-
ground using pixel level information is proposed. A number of pixels from the nuclei, cytoplasm and background are extracted 
from 100 images to form a feature vector which is trained using noise reduction, edge detection and texture filters to produce a 
pixel level classifier. Comparison of the segmented images’ nucleus and cytoplasm parameters (nucleus area, longest diameter, 
roundness, perimeter and cytoplasm area, longest diameter, roundness, perimeter) with the ground truth image features yielded 
average percentage errors of 0.14, 0.28, 0.03, 0.30, 0.15, 0.25, 0.05 and 0.39 respectively. Validation of the pixel classifier with 10-
fold cross-validation yielded pixel classification accuracy of 98.50%, 97.70% and 98.30% with Fast Random Forest, Naïve Bayes 
and J48 classification methods respectively. Comparison of the segmented nucleus and cytoplasm with the ground truth nucleus 
and cytoplasm segmentations resulted into a Zijdenbos similarity index greater than 0.9321 and 0.9639 for nucleus and cytoplasm 
segmentation respectively. The results indicated that the proposed pixel level segmentation classifier was able to extract the nucle-
us and cytoplasm regions accurately and worked well even though there was no significant contrast between the components in the 
image.  The results from cross-validation and test set evaluation imply that the classifier can segment cells outside the training 
dataset with high precision. Choosing an appropriate feature vector for training the classifier was a great challenge and a novel 
task in the proposed approach. As a result, good segmentation of the nucleus and cytoplasm was attained. Given the accuracy of 
the classifier in segmenting the nucleus, which plays an important role in cervical cancer diagnosis, the classifier can be adopted in 
systems for automated diagnosis of cervical cancer from pap-smear images. 
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I. INTRODUCTION

Pap-smear screening is the most successful and effective 
attempt by medical science and practice to facilitate the ear-
ly detection and screening of cervical cancer [1]. However, 
the manual analysis of the pap-smear images is time-
consuming, laborious and error-prone [2]. Hundreds of sub-
images within a single slide have to be examined under a 
microscope by a trained cytopathologist for each patient 
during screening. Human visual grading of microscopic bi-
opsy images tends to be time-consuming, subjective, and 
inconsistent [2].  

To overcome the limitations associated with the manual 
analysis of pap-smear images, computer-assisted pap-smear 
analysis systems using image processing and machine-
learning techniques have been proposed. Image segmenta-
tion is a key and challenging part of such systems. Segmen-
tation of the cervical cells acts as the foundation for all au-
tomated cervical cancer screening systems. Effective image 
segmentation should facilitate the extraction of meaningful 

information and simplification of the image data for later 
analysis. Moreover, poor segmentation usually leads to poor 
results during image analysis [3]. Most of the time, cyto-
pathologists are interested in the evaluation of the nucleus 
and cytoplasm parameters to act as the basis for cell-based 
diagnosis screening due to the fundamentally important role 
of nuclei in cervical cancer cell [4].  Hence, accurate nucleus 
and cytoplasm segmentation are paramount. The aim of 
segmentation is to divide an image into several parts having 
similar features for easy analysis. 

There are a number of image segmentation techniques but 
which to use depends on the dataset. Segmentation tech-
niques can be broadly divided into two categories; (i) dis-
continuity based approach which looks at abrupt intensity 
change; and (ii) similarity-based segmentation techniques 
which look for image regions with similar properties [5]. 
Image segmentation techniques can also be classified based 
on the segmentation approach as described below. 
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1. Thresholding techniques where the pixels are grouped 
based on intensity values. These can be divided into 
global, variable or multiple thresholding methods [6].  

2. Edge Detection methods where the edges are detected 
and then connected together to form the object bounda-
ries to segment the required regions. These include the 
Gray histograms and gradient-based methods [7]. 

3. Active Contours which divide an image into multiple 
sub-regions of continuous boundaries [8]. 

4. Region-based methods segment the image into various 
regions having similar characteristics. These can be re-
gion growing or region splitting/merging methods [9]. 

5. Clustering methods segment the image into clusters 
having pixels with similar characteristics. These meth-
ods include hard and soft clustering methods. K-means 
and fuzzy c-means are the commonest hard and soft 
clustering mechanisms respectively [10].  

6. Trainable segmentation which use pixel level infor-
mation to train a classifier that can then be used to per-
form the same task on unknown data [11]. 

 
This paper presents a pixel level classifier to segment the 
nucleus, cytoplasm and background from cervical cells 
based on pixel level information and a set of training fea-
tures. 

 

II. PIXEL LEVEL BASED SEGMENTATION 
Labelling data for segmentation task is difficult if com-

pared to labelling data for classification [12]. For this rea-
son, several weakly supervised pixel segmentation systems 
have been proposed in the past few years. Vezhnevets [13] 
proposed a method based on semantic segmentation [14]. 
However, the model fails to model the relationship between 
superpixels. To model these relationships Vezhnevets et al. 
[15] introduced a graphical model, named Multi-Image 
Model (MIM) to connect superpixels from all training imag-
es, based on their appearance similarity. Verrari et al.  [16] 
presented a parametric family of structured pixels, where 
each pixel carries visual cues in a different way. An algo-
rithm based on Gaussian processes was proposed to efficien-
cy search the best model for different visual cues. More re-
cently, Zhang et al. [17] proposed an algorithm that learns 
the distribution of spatially structural super pixel sets from 
image-level labels. This was achieved by first extracting 
graphlets from a given image. Labels from the training im-
ages were transferred into graphlets throughout a proposed 
manifold embedding algorithm.  

In contrast with previous approaches for weakly super-
vised segmentation, in this paper, we avoid designing task-
specific features for segmentation. Instead, a pixel level 
classifier learns the features and it is trained through training 
features which cast the problem of segmentation into the 
problem of finding pixel level labels from image-level la-
bels. Another difference from our approach is that we train 

our classifier in different types of cervical cancer cells with 
the help of a skilled cytopathologist using trainable weka 
segmentation which has been limitedly explored for cervical 
cell segmentation. 

 
III. TRAINABLE WEKA SEGMENTATION 

Trainable Weka Segmentation (TWS) is an image 
processing toolkit that combines Fiji; an image processing 
toolkit developed by Schindelin et al. [18] and the state-of-
the-art algorithms provided in the data mining and machine 
learning toolkit; Waikato Environment for Knowledge 
Analysis (WEKA) [19]. Trainable Weka Segmentation 
provides a set of library methods for extracting statistical 
properties of an image from user-provided pixel samples and 
uses that information to segment the rest of the pixels in that 
image (training dataset) or a similar image (testing dataset) 
via scripting. 

Trainable Weka Segmentation has been used in a number 
of applications by different researchers. Dobens et al. [20] 
used TWS to analyze wing photomicrographs; Krueger et al. 
[21] used it for visualization of myocardial blood flow; and 
Hart et al. [22] for monitoring nests of bees. It has also been 
used to analyze images obtained using different imaging 
modalities. Kulinowski et al. [23] presented a methodology 
for the processing of magnetic resonance imaging data for 
the quantification of the dosage form matrix evolution dur-
ing drug dissolution. The images were segmented into three 
regions using threshold-based segmentation algorithms due 
to the trimodal structure of the image intensity histograms.  
Villa et al. [24] used TWS for automated membrane segmen-
tation in anisotropic stacks of electron microscopy brain 
tissue sections. The ambiguities in neuronal segmentation of 
a section were resolved by using the context from the neigh-
bouring sections.  Felcht et al. [25] applied TWS on confocal 
fluorescence microscopy images to identify a model for the 
opposing roles of ANG-2 in angiogenesis. Maiora et al. [26] 
used TWS to develop a novel active learning approach for 
the semi-automatic detection and segmentation of the lumen 
and the thrombus using image intensity features and dis-
criminative Random Forest classifiers. Favazza et al. [27] 
used TWS to study the relationship between retinal and tuni-
ca vasculosa lentils (TVL) disease in retinopathy of prema-
turity (ROP) using angiography. 

In this paper we explored its applicability in cervical cells 
segmentation. 

IV. METHODS 
The approach for the development of the proposed pixel 
level classifier for segmentation of the nucleus, background 
and cytoplasm of the cervical cells is depicted in Fig. 1. 
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A. INPUT IMAGE 
The dataset used in the work documented in this paper 

contains cells obtained from the Herlev Hospital Dataset 
(http://labs.fme.aegean.gr/decision/downloads) prepared by 
Jantzen et al. [28]. The dataset contains 947 cervical cells 
that were obtained by skilled cytotechnicians using a micro-
scope connected to a frame grabber and taken with a resolu-
tion of 0.201μm/pixel. The images were segmented using 
CHAMP commercial software developed by DIMAC Imag-
ing systems. 

 
B. GRAYSCALE 
The trainable pixel level classifier is semi-automated in 

the sense that the initial segmentation is carried out by an 
experienced cytopathologist. The cytopathologist relies on 
pixel level information like intensity for pixel classification. 
Hence grayscale conversion was carried out to ensure that 
the value of each pixel is a single sample representing only 
intensity information each pixel has. This made pixel classi-
fication easy for the cytopathologist. Conversion to gray-
scale was implemented using (1). 
Grayscale Image= ((0.3 * R) + (0.59 * G) + (0.11 * B)).           (1)                         

where R=Red, G=Green and B=Blue colour contributions of 
the new image. 
 

C. RAINABLE PIXEL LEVEL CLASSIFIER 
i. Pixel classification 

The trainable pixel level classifier was developed through 
the steps depicted in Fig. 2. First, pixels were extracted from 
the nuclei, cytoplasm and background from one hundred 
(100) images by an experienced cytopathologist as shown in 
Fig. 3. Second, the selected pixels are trained using noise 
reduction, edge detection and texture filters to produce a 
pixel level classifier. Third, the pixel level classifier is cross-
validated with 10-fold cross-validation. 

 
The pixels from the nucleus, cytoplasm and background 
were identified based on their physical properties which 
include: size, shape and intensity [29]. The nucleus is large, 
oval and bright. The Cytoplasm is oval and less bright 
whereas the background is least bright [30]. The pixels from 
each class (nucleus, cytoplasm and background) were used 
to generate a feature vector, which is defined by (2). 
 

   (2) 
 
 
where Ni, Ci and Bi are the pixels from the nucleus, cyto-
plasm and background of the image. The feature vector in-
formation was extracted from all the one hundred images as 
illustrated in Fig.3. 

 
ii. Training features 
Each pixel extracted from the image was representing not 
only its intensity but a set of image features that contain a lot 
of information including texture, borders and colour. Choos-
ing an appropriate feature vector for training the classifier 
was a great challenge and a novel task in the proposed ap-
proach. A total of 226 training features were used to train the 
extracted pixels shown in Table 1.  

Fig.1. Nucleus, Cytoplasm and Background Segmentation 

Fig.2. Pixel level classifier development stages

Fig.3. Generation of a feature vector from the selected pixels

Table 1. Pixels and features used for building the classifeir
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The selected pixels were trained using the following training 
features. 

Noise Reduction. The Kuwahara [31] and Bilateral filters 
[32] were used to train the classifier on noise removal. The 
bilateral filter has been reported to be an excellent filter for 
removing noise whilst preserving the edges [32]. The bilat-
eral filter is defined by (3). 

where wp is the normalization factor, parameters rσ and  sσ
determine the amount of filtering of the image. In this paper, 
the values of 5 and 10 were used for rσ  and sσ respectively. 
The Kuwahara filter was used to train the classifier on adap-
tive noise reduction. The filter uses linear kernels whose size 
is assumed to be equal to the membrane patch size of each 
pixel. 

Edge Detection: Edge detection is a key stage in image 
segmentation [33]. Edge detection approaches are grouped 
into search-based [34] and zero-crossing based techniques. A 
number of boundary detection techniques have been pro-
posed by different researchers and there is no single tech-
nique that works best for all different images [35]. In the 
work documented here, a Sobel filter [36], Hessian matrix 
[37] and Gabor filter [38] were used for training the classifi-
er on boundary detection in any image.  

Texture filtering: Texture smoothing is the method used 
to determine the texture colour for a texture mapped pixel, 
using the colours of nearby texels [39]. The mean, variance, 
median, maximum, minimum and entropy filters were used 
for texture filtering. The pixels within a region of interest in 
each image were subjected to the mean, variance, median, 
maximum and minimum operations and the target pixel set 
to that value. The entropy draws a circle around each pixel, 
gets the histogram of that split and then calculates the entro-
py for each pixel which acts as the basis for the pixel classi-
fication. 
  
iii. Training the classifier 
The training feature set was fed to a Fast Random Forest 
(FRF) classifier that trained it to build the classifier [40]. 
This was achieved by building a forest of classification trees 
using the selected pixels and the training feature set. The 
Random Forest Algorithm classification is shown in the 
pseudo-code below. 

1. Randomly select k features from a total of m fea-
tures where k<<m. 

2. From among the k features, compute the node using 
the best split point. 

3. Split the node d into daughter nodes using the best 
split. 

4. Repeat steps 1 to 3 until i number of nodes has 
been reached. 

5. Build the forest by repeating steps 1 to 4 for n 
number of times to create n number of trees. 

6. Take the training features and use the rules of each 

created decision tree to predict the outcome. 
7. Calculate the votes for each predicted outcome. 
8. Consider the most frequently voted for the predict-

ed outcome as the final prediction. 
 

iv. Validation of the classifier 
The accuracy of the classifier was evaluated using a 10-fold 
cross-validation and supplied test set using Fast Random 
Forest [41], Naïve Bayes [42] and J48 [43] classification 
models. The evaluation considered whether each pixel was 
correctly classified into nucleus, cytoplasm or background 
(True positive) or whether each pixel was incorrectly classi-
fied into the nucleus, cytoplasm or background (False posi-
tive). 
 

D. RESULT LABEL IMAGE 
The resulting image was a 3 channel image produced by 
applying the classifier to an input image (Fig.1). The result-
ing image was split into the 3 channels which corresponded 
to the nucleus, cytoplasm and background giving the indi-
vidual segmentations for each class. These were further pro-
cessed using morphology operations and image Binarization 
to yield better segmentation. 
 
i. Binarization 

Binarization is the process of converting a pixel image to a 
binary image [44]. This was import for feature extraction. 
The simplest way to use image binarization is to choose a 
threshold value, and classify all pixels with values above 
this threshold as white, and all other pixels as black [44]. 
The problem then is how to select the correct threshold for 
training and test images. In many cases, finding one thresh-
old compatible with the entire dataset is very difficult, and in 
many cases even impossible. Therefore, adaptive local bina-
rization was used where a window of NxN blocks slide over 
the entire image and threshold value is computed for each 
local area under the window. The method developed by 
Niblack et al. [45] was adopted where the threshold value 
for the local area under the window was calculated pixel-
wise.  The calculation of the threshold value was based on 
the local mean and standard deviation of window area. The 
threshold value was calculated using (4). 

             (4) 
Where μ is the mean of local area pixels of an image and � 
is the standard deviation of the local pixel area. The value of 
k=0.2 was used. 
 
ii. Morphology 
To overcome inaccuracies in the segmentation, morphologi-
cal operations were carried out. Morphology is a set-theory 
approach that considers an image as the elements of a set 
and process images as geometrical shapes [46]. It is a pow-
erful technique for solving a number of problems in image 
analysis and computer vision [41].  The idea is to analyze an 
image with a simple, predefined shape, drawing conclusions 
on how this shape fits or misses the shapes in the image us-
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ing binary structuring elements such as crosses, squares, and 
open disks [47].  

The two basic morphological operators are the erosion 
and the dilation based on Minkowski algebra [39]. In gen-
eral, Dilation means objects to dilate or grow in size and 
erosion means the objects to shrink. The basic effect of ero-
sion (dilation) operator on an image is to shrink (enlarge) the 
boundaries of foreground pixels. A dilation followed by an 
erosion is called a closing operation. The morphological 
operations can also be extended to grayscale images where 
the structuring element has grey values associated with eve-
ry coordinate position as does the image. Dilation operation 
of a Grayscale image by a two-dimensional point set A is 
defined as; 

( )( ) ( ) ( ){ }, max , | ,g r c g r k c l k l A⊕ Α = − − ∈                (5) 
Similarly, erosion of the grayscale image by a two-
dimensional point set A is defined as, 
    ( )( ) ( ) ( ){ }, min , | ,g r c g r k c l k l AΘΑ = + + ∈                 (6) 
where g is the grayscale image, A is a structuring element 
[40] and (r, c) is the pixel of the image g, (k, l) is the size of 
the element A.  

In this paper, closing operation was utilized to overcome 
the inaccuracies in the thresholding fusing narrow breaks 
around the nucleus boundary and filling small holes and 
gaps in the image. Closing is mathematically defined as: 
                [ ]g A g A A• = ⊕ Θ                                         (7) 
where Θ is an erosion,⊕ is a dilation and g is a binary image 
and A is structuring element [40]. After the morphological 
operation, image shape features, such as area, perimiter, 
roundness, longest diameter of the cytoplasm ad nucleus 
were extracted. 

V. RESULTS 
i. Pixel classification accuracy 
To facilitate the evaluation of the segmentation algorithm, 
we first evaluated the performance of the classifier on image 
pixel classification. We have selected the classification accu-
racy as a performance measure. The accuracy is estimated 
by the ratio of the total number of correctly classified pixels 
(sum of true positives and true negatives) to the total number 
of pixels in the image. Other important measures are sensi-
tivity precision, recall and F-measure. This was done with 
10-fold cross-validation and test data set. 
 
10-fold cross-validation. 
Since only 100 images were used to extract 24,134 pixels 
used for building the classifier, cross-validation was used to 
estimate how the classifier was expected to perform in gen-
eral when used to make predictions on data not used during 
its training. To reduce bias of the classifier, a larger value of 
k (k=10) was used. A classification accuracy of 98.5% was 
attained using Fast Random Forest. Detailed accuracy show-
ing the precision, recall and F-measure per class is shown in 
Table 2. 

The classifier’s performance was also evaluated using Naïve 
Bayes algorithm with 10-fold cross-validation. A classifica-
tion accuracy of 97.5% was obtained. Detailed accuracy by 
class is shown in Table 3. 

Similarly, the classifier’s performance was evaluated using 
J48 algorithm with 10-fold cross-validation. A classification 
accuracy of 98.3% was obtained. The detailed accuracy by 
class is shown in Table 4. 

 
Test data set. 
To further investigate the performance of the classifier on 
unseen data, it was run on a test dataset using Fast Random 
Forest and J48 algorithms. The dataset consisted of 817 im-
ages from the Herlev dataset that were not used to train the 
classifier. Classification accuracies of 98.65% and 98.99% 
were attained using the Fast Random Forest and the J48 Al-
gorithms respectively. 

 
ii. Segmentation accuracy 
To evaluate the accuracy of the nucleus and cytoplasm seg-
mentations, features were extracted from the nucleus and 
cytoplasm and compared with the ground truth segmentation 
features that were extracted using CHAMP commercial 
segmentation software by Jantzen et al. [28]. 

The nucleus area, nucleus longest diameter, nucleus round-
ness, nucleus perimeter, cytoplasm area, cytoplasm longest 
diameter, cytoplasm roundness and cytoplasm perimeter 
were extracted from the segmented cervical cells and com-
pared with the ground truth measurements. T he percentage 
errors in the nucleus area (NA), nucleus longest diameter 
(NLD), nucleus roundness (NR), nucleus perimeter (NP), 
cytoplasm area (CA), cytoplasm longest diameter (CLD), 
cytoplasm roundness (CR) and cytoplasm perimeter (CP) 
were calculated as shown in Table 5 

Fig. 4. Visual Analysis of the Origial Image and Segmented Images 

Table 3. Pixel classification evaluation using Naïve Bayes

Table 4. Pixel classification evaluation using J48 Algorithm

Table 2. Pixel classification evaluation using Fast Random For-
est
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A box plot was obtained to show the shape of the distri-
bution of the percentage error, its central value, and its vari-
ability in each extracted feature as shown in Figure 5. 

 
The areas of the cytoplasm and nuclei of the segmented 

cervical cells were also compared with results obtained by 
Martin [48] and Norup [49]. The percentage errors in the 
areas of the nucleus (NA) and cytoplasm (CA) were calcu-
lated and shown in Table 6. 

 
Our method's nucleus segmentation accuracy is compared 

with that of Asli et al [21] and Kuan et al.  [24] who also 
tested their nuclei segmentation algorithm on the Herlev 
dataset.  The same metric ZSI (Zijdenbos similarity index) is 
employed in this paper as used by Asli et al [21] and Kuan et 
al [24], and is defined by (8) 

 
                    (8) 

 
where X and Y are two sets of segmented pixels. The im-

ages in the Herlev dataset belong to 7 classes and are used to 
test the ability of the pixel level classifier to accurately lo-
cate nucleus regions in each class. As done in [21]and [24], 
we also use the segment with the highest overlap with the 
ground truth nucleus region for comparison. The ZSI for the 
pixel level classifier has a mean larger than 0.9321 and 
standard deviation smaller than 0.0941 for all the 7 classes, 
as shown in Table 7. It can be observed that a pixel level 
classifier performs better than that the methods by Asli et al. 
[21] and Kuan et al. [24]. 

 
Similarly, to Shys et.al [20] and Kuan et al [24] we chose 

100 single-cell cervical smear images from the Herlev da-
taset. The performances of the pixel level classifier and the 
method presented in [20] and [24] are also evaluated using 
ZSI for cytoplasm segmentation. The statistical results are 
shown in Table 8. 

 
VI. DISCUSSION 

The results indicated that the proposed pixel level segmen-
tation classifier was able to extract the nucleus and cyto-
plasm regions accurately and worked well for the different 
classes of images. From the comparative analysis of the re-
sults of the segmented images’ nucleus parameters (area, 
longest diameter, roundness and perimeter) with the ground 
truth measurements, it was observed that the measurements 
were in agreement with average percentage errors of 0.14, 
0.28, 0.03 and 0.30 in each parameter respectively. Further-
more, the comparative analysis of the results of the seg-
mented images’ cytoplasm’s parameters (area, longest diam-
eter, roundness and perimeter) with the ground truth meas-
urements, showed that the measurements were in agreement 
with average percentage errors of 0.15, 0.25, 0.05 and 0.39 
respectively. From the results shown in Figure 4, it is ob-

Table 7: Comparison of the nucleus segmentation acurracy

Fig. 5. Boxplot showing percentage errors in extracted features

Table 6. Percentage errors in nucleus and cytoplasm Areas

Table 8. Comparison of the cytoplasm segmentation acurracy

Table 5. Percentage error between reference and extracted fetures
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served that the algorithm is excellent at nucleus segmenta-
tion. This is also shown by the least variations in the nucleus 
measurements shown in the boxplot and the least false posi-
tives in Table 2, Table 3 and Table 4. This could be attributed 
to the nucleus’ brightness compared to other regions and 
given the fact that the developed pixel level classifier is 
based on pixel level information such as pixel intensity and 
shape. Pixel classification accuracies of 98.65% and 98.99% 
were obtained using the Fast Random Forest and the J48 
Algorithms respectively on validation of the classifier on a 
test data set. This implies that the classifier can segment 
cells outside the training dataset with high precision. Given 
the accuracy of the classifier in segmenting the nucleus 
which plays an important role in cervical cancer diagnosis 
and classification, the classifier can be adapted for automat-
ed systems for cervical cancer diagnosis and classification. 
Comparison of the nucleus and cytoplasm segmentation with 
other studies showed that the pixel level classifier outcom-
petes them in terms of segmentation accuracy. 

VII. CONCLUSSION 
This paper articulates a potent approach to the segmentation 
of cervical cells into nucleus, cytoplasm and background 
using pixel level information. Choosing an appropriate fea-
ture vector for training the classifier was a great challenge 
and a novel task in the proposed approach. As a result, good 
classification accuracy in the pixel classification stage was 
obtained. Consequently, good segmentation of the nucleus 
and cytoplasm were obtained. The experimental results 
showed that the approach gave good pixel classification and 
achieved a pixel classification accuracy of 98.50%, 97.70% 
and 98.30% with Fast Random Forest, Naïve Bayes and J48 
classifiers with 10-fold cross-validation. Comparison of the 
segmented nucleus and cytoplasm with the ground truth nu-
cleus and cytoplasm segmentations resulted into a Zijdenbos 
similarity index of greater than 0.9321 and 0.9639 for nucle-
us and cytoplasm segmentation respectively. The method 
serves as a basis for first level segmentation of cervical cells 
for diagnosis and classification of cervical cancer from pap-
smear images using nucleus and cytoplasm features. 
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