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Abstract This paper concerns the classification of finite coloured linear orders up to
n-equivalence. Ehrenfeucht–Fraïssé games are used to define what this means, and
also to help analyze such structures. We give an explicit bound for the least number
g(m, n) such that any finite m-coloured linear order is n-equivalent to some ordering
of size ≤ g(m, n), from which it follows that g is computable. We give exact values
for g(m, 1) and g(m, 2). The method of characters is developed and used.
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1 Introduction

We say that relational structures A and B are n-equivalent, written A ≡n B, if player
I I has a winning strategy in the n-move Ehrenfeucht–Fraïssé game Gn(A, B) on A
and B. In this game, players I and I I move alternately, starting with I. On each
move, I chooses a point of A or B (not necessarily the same one each time), and I I
replies by choosing a point of the other structure (which is as ‘similar’ to I’s choice
as possible). After n moves the players have between them chosen a1, a2, . . . , an ∈ A
and b 1, b 2, . . . , b n ∈ B, and player I I wins if the map sending ai to bi for each i is an
isomorphism. Player I wins otherwise. Note that ≡n is automatically an equivalence
relation on the class of structures of any finite relational language.
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A coloured linear ordering is a triple (A, <, F) where (A,<) is a linear order and
F is a mapping from A onto a set C which we think of as a set of colours. In order that
we can use the theory of Ehrenfeucht–Fraïssé games, we need to think of a coloured
linear order as a relational structure, which is done by using (finitely many) unary
predicates to stand for the colours (which must therefore pick out pairwise disjoint
sets whose union is the whole set), though in practice this is more easily expressed
by using the colouring function F. In this paper we consider the classification of
finite m-coloured linear orders up to n-equivalence. The isomorphisms used in the
corresponding Ehrenfeucht–Fraïssé games must therefore preserve colours as well
as the ordering. We may think of finite coloured linear orders as ‘words’ (or finite
strings) over an alphabet consisting of the colour set. If we (linearly) order the
colours in some way, then the words of any fixed length may be ordered by the first
point of difference, giving the ‘lexicographic’, or dictionary order. As an illustration
of this, we shall remark in Lemma 3.1 that two coloured linear orders A and B are
1-equivalent if and only if the sets of colours appearing in A and B are same.
Therefore a shortest representative of an ≡1-class will have each colour appearing
exactly once, but this will not be unique unless we make an arbitrary choice, for
instance by taking the lexicographically least.

By general considerations (see [5] for instance) it is known that for any finite
relational language there are only finitely many ≡n-classes (which follows from
the fact that up to logical equivalence there are only finitely many sentences of
given quantifier depth). Hence there is a least number g(m, n) such that for any
finite m-coloured linear order A, A ≡n B for some m-coloured linear order B with
|B| ≤ g(m, n). (We note that there are infinite linear orders (even without colours)
which are 2-equivalent to no finite linear orders; see Lemma 3.2 for example.) It
seems quite difficult however to give any precise information about the values of
g(m, n). It is our main aim to give an explicit (recursively defined) bound f (m, n)

for g(m, n), and from this it follows easily that g(m, n) is computable. The bound
is almost certainly much larger than necessary, but getting a more accurate value
would be a lot harder (though in Section 3 we give exact values for g(m, 1) and
g(m, 2)).

We remark on some related work. A detailed analysis of Ehrenfeucht–Fraïssé
games on linear orderings was done by Ryan Bissell–Siders in [1], but his results
are different in character and do not apply directly to coloured linear orderings.
The decidability of the theory of finite m-coloured linear orders follows from the
decidability of the weak second order theory of linear orders established in [4].
We also remark that if we define a (related) function h(m, n) as the least number
such that that every finite m-coloured linear order A has a subset B such that A is
n-equivalent to B and |B| ≤ h(m, n), then our proof will also show that g(m, n) ≤
h(m, n) ≤ f (m, n), though we do not know at present whether g(m, n) = h(m, n) for
all values of n (it holds for n = 1 and 2 as is shown in Section 3).

Now the values of g(m, n) are given inductively, and so we concentrate on the step
from g(m, n) to g(m, n + 1). Assuming therefore that we know that g(m, n) exists, we
shall write �(m, n) for the set of all finite m-coloured linear orders A of size at most
g(m, n) that satisfy the following conditions:

(i) if B is a finite m-coloured linear order such that A ≡n B, then |A| ≤ |B|.
(ii) A is the lexicographically least member of its n-equivalence class (subject to

clause (i)).
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Thus the members of �(m, n) are representatives of the ≡n-classes of finite
m-coloured linear orders of least size. As remarked above, g(m, n) exists for each m
and n (and is finite), and it follows that �(m, n) is finite, though we can also deduce
this from the proofs given below. We let [A]n stand for the member of �(m, n) which
is n-equivalent to A. For a ∈ A we write A<a, A≤a, A>a, A≥a for {x ∈ A : x < a},
{x ∈ A : x ≤ a}, {x ∈ A : x > a}, and {x ∈ A : x ≥ a} respectively, and these subsets
of A (or indeed any others) are viewed as coloured linear orders under the structure
inherited from A.

Definition 1.1 Let A be a finite m-coloured linear ordering, n ≥ 2. Then the n-
character of a ∈ A is the ordered triple 〈F(a), [A<a]n, [A>a]n〉.

For any A, we let ρn(A) = {〈F(a), [A<a]n, [A>a]n〉 : a ∈ A} and for c ∈ C, ρc
n(A)

be the set of members of ρn(A) whose first co-ordinate is c. Thus ρn(A) is equal to the
disjoint union

⋃
c∈C ρc

n(A). If A is a finite m-coloured linear ordering and a ∈ A, then
we shall also write ρn(a) for 〈F(a), [A<a]n, [A>a]n〉, and sometimes refer to character
instead of n-character. Let 〈[X]n, [Y]n〉 ∈ �(m, n)2. Then 〈c, [X]n, [Y]n〉 is said to be
an n-character of A if A<a ≡n X and A>a ≡n Y for some c-coloured element a ∈ A.

The following result (which is a version of a theorem proved in [5] but here stated
in terms of characters) gives a necessary and sufficient condition for two m-coloured
linear orders A and B to be n-equivalent, which helps us reduce consideration
of games with n + 1 moves to games with n moves, so enabling us to deal with
�(m, n) and g(m, n) inductively. It applies whether the coloured orderings are finite
or infinite, and will be used again in Section 3.

Theorem 1.2 A ≡n+1 B if and only if ρn(A) = ρn(B).

Proof Suppose that A ≡n+1 B. Thus player I I has a winning strategy σ in
Gn+1(A, B). Let 〈X, Y〉 ∈ ρc

n(A). This means there is a c-coloured element a ∈ A
such that X ≡n A<a and Y ≡n A>a. Let player I choose a on his first move, and
let b ∈ B be I I’s response using σ . Because σ wins for I I, b must be a c-coloured
element of B such that A<a ≡n B<b and A>a ≡n B>b . For as player I I wins in the
remaining n moves using σ , if either of these failed, I could defeat I I by playing only
on the relevant side of a and b . We therefore find that B<b ≡n X and B>b ≡n Y.
Hence 〈X, Y〉 ∈ ρc

n(B). This shows that ρc
n(A) ⊆ ρc

n(B) and the reverse inclusion is
established similarly.

Conversely suppose that ρc
n(A) = ρc

n(B) for all c ∈ C. We give a winning strategy
for player I I in Gn+1(A, B). If player I chooses a c-coloured element a ∈ A for some
c ∈ C, then a determines a character 〈c, [A<a]n, [A>a]n〉 ∈ ρc

n(A). Since ρc
n(A) =

ρc
n(B), also 〈c, [A<a]n, [A>a]n〉 ∈ ρc

n(B). There is therefore a c-coloured element b ∈
B such that A<a ≡n B<b and A>a ≡n B>b . Player I I plays b on his first move, and
thereafter uses his winning strategies in Gn(A<a, B<b ) or Gn(A>a, B>b ) to respond
to whatever player I plays, depending on whether I plays points to the left or right
of a or b . This gives a winning strategy for player I I, so A ≡n+1 B. 	


As illustration of the use of characters, we remark that we can easily use them to
derive the classification of (monochromatic) finite linear orders up to n-equivalence
(see [5]), which says that finite linear orders A and B are n-equivalent if and only if
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they either have equal size, which is less than 2n − 1, or they both have sizes ≥ 2n − 1
(which need not be equal). We omit the straightforward details.

This idea is extended to infinite ordinals in [3], and also to the coloured case.
In this paper we concentrate however on the extension to finite linear orders (and
general linear orders for n ≤ 2), but now with finitely many (m) colours allowed.
Unfortunately the classification is not (at present) as explicit as in the monochromatic
case, and the best we can do is to give suitable bounds. These are sufficient
however to establish the computability of the least bound g(m, n) on the lengths
of representatives for the ≡n-classes (of finite m-coloured linear orders), and also to
show that the problem of determining an optimal ≡n representative corresponding
to any given finite m-coloured linear order is decidable. In Section 3 we give precise
values for g(1, m) and g(2, m) for all m.

The following lemma will be needed at various points.

Lemma 1.3 Let X, Y, A and B be coloured linear orderings. If A ≡n B, then X +
A + Y ≡n X + B + Y.

Proof (i) By assumption, player I I has a winning strategy σ in Gn(A, B). He plays
in Gn(X + A + Y, X + B + Y) as follows. Whenever player I plays in X or Y, he
just copies the move and plays the same point in the other structure. If player I
plays in A or B, he uses σ to provide his next move. This describes a strategy in
Gn(X + A + Y, X + B + Y) for player I I, which wins since at most n of the moves
are in A or B. The moves in X and Y precisely match, so as σ wins in Gn(A, B), the
map produced must be a partial isomorphism. Hence I I has a winning strategy for
Gn(X + A + Y, X + B + Y). 	


Note that it follows from this lemma that if A ≡ B, then X + A + Y ≡ X + B + Y
(though this is not needed in this paper).

2 Classification of Finite Coloured Linear Orderings

Let a < b be elements of a coloured linear order A such that 〈F(a), [A<a]n,

[A>a]n〉 = 〈F(b), [A<b ]n, [A>b ]n〉. Suppose that, for every x ∈ A with a < x ≤ b ,
there is y ≤ a such that 〈F(x), [A<x]n, [A>x]n〉 = 〈F(y), [A<y]n, [A>y]n〉. Then we
call (a, b ] an unnecessary interval. Otherwise it is a necessary interval. If (a, b ] ⊆ A
is a necessary interval, we refer to any element x ∈ (a, b ] for which there is no cor-
responding element y ≤ a such that 〈F(x), [A<x]n, [A>x]n〉 = 〈F(y), [A<y]n, [A>y]n〉
as a new element of (a, b ] and its character is called a new character. We note that
(a, b ] is unnecessary if and only if it has no new character.

The following theorem is the key result in our inductive determination of g(m, n).

Theorem 2.1 Let A be a f inite m-coloured linear order and let a and b be elements of
A such that a < b satisfying the following conditions:

(i) a and b determine the same n-character, that is, 〈F(a), [A<a]n, [A>a]n〉 =
〈F(b), [A<b ]n, [A>b ]n〉.
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(ii) (a, b ] is unnecessary.

Then A is n + 1-equivalent to B = A − (a, b ].

Proof By Theorem 1.2 it suffices to show that ρn(A) = ρn(B).
If x ≤ a, then A<x = B<x and

A>x = (x, a] ∪ A>a

≡n (x, a] ∪ A>b (by Lemma 1.3)

= B>x.

If x > b , then A>x = B>x and

A<x = A<b ∪ [b , x)

≡n A<a ∪ [b , x)

∼= A≤a ∪ (b , x) (since F(a) = F(b))

= B<x.

Otherwise suppose that a < x ≤ b , and let y be given by the assumption that
(a, b ] is unnecessary, so that y ≤ a with F(x) = F(y). Then A<x ≡n A<y = B<y,
and A>x ≡n A>y = (y, a] ∪ A>a ≡n (y, a] ∪ A>b = B>y. So this shows that ρn(A) =
ρn(B). Therefore A ≡n+1 B. 	


Corollary 2.2 If A is a f inite m-coloured linear ordering and P = |ρn(A)|, then the
smallest m-coloured linear ordering that is (n + 1)-equivalent to it has size at most
P(P + 1).

Proof Let B be a finite m-coloured linear ordering of least size in the ≡n-class of
A, and suppose for a contradiction that B contains at least P + 2 points having the
same character. Then there are P + 1 ‘gaps’ and one gap must fulfil the condition
that no new character has appeared in that gap for the first time, since P is equal
to the total number of possible characters. By Theorem 2.1, such a gap can be cut
out. We therefore deduce that B contains at most P + 1 such points. Hence |B| ≤
P(P + 1). 	


Now we can deduce from this result an explicit (though very large) bound f (m, n)

for g(m, n) (and at the same time remark that it is also a bound for h(m, n) defined
in the introduction). Observe that since by definition, g(m, n) is the greatest length
of a member of �(m, n), every member of �(m, n) is an ordering of length at most
g(m, n), and so |�(m, n)| ≤ ∑g(m,n)

q=0 mq. In view of Corollary 2.2 this leads us to define
f (m, n) by:

f (m, 1) = m, f (m, n + 1) = m ·
⎛

⎝
f (m,n)∑

q=0

mq

⎞

⎠

2

·
⎛

⎜
⎝m ·

⎛

⎝
f (m,n)∑

q=0

mq

⎞

⎠

2

+ 1

⎞

⎟
⎠ .

Theorem 2.3 For every m, n ≥ 1, g(m, n) ≤ h(m, n) ≤ f (m, n).
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Proof We use induction on n. We can easily deduce from consideration of a 1-move
game that all members of �(m, 1) are m-coloured linear orders in which no colour is
repeated (see Lemma 3.1). Hence g(m, 1) = m = f (m, 1).

For the induction step, we observe that for any finite m-coloured linear ordering
A, P = |ρn(A)| ≤ m × |�(m, n)|2. As remarked before the statement of the theorem,
this is at most m.(

∑g(m,n)

q=0 mq)2 ≤ m.(
∑ f (m,n)

q=0 mq)2 by induction hypothesis. By Corol-

lary 2.2, g(m, n + 1) ≤ m · (
∑ f (m,n)

q=0 mq)2 · (m · (
∑ f (m,n)

q=0 mq)2 + 1) = f (m, n + 1).
The fact that h(m, n) ≤ f (m, n) follows from the proof since the reduction of the

ordering to length at most f (m, n) is carried out by cutting out unnecessary intervals;
and g(m, n) ≤ h(m, n) is immediate. The reason that we cannot in general deduce
from our proof that g(m, n) = h(m, n) is that there may be a shorter coloured linear
order n-equivalent to A which is not actually a substructure of A. 	


Corollary 2.4

(i) g(m, n) is a computable function.
(ii) There is an ef fective procedure for determining, for any f inite m-coloured linear

order A, the (unique) member of �(m, n) which is n-equivalent to A.

Proof We do the two parts simultaneously by induction on n.
If n = 1 then g(m, n) = m. Given A we have to find the lexicographically least

finite m-coloured linear order [A]1 with the same colours appearing as for A, but
only once each. For this we search through A from the left, and delete any point
having a colour which has already appeared. This produces an ordering of the correct
length, and since it only has finitely many rearrangements, we can effectively find
which is lexicographically least.

For the induction step, assume that we have computed g(m, n), and that we have
an effective procedure for finding the representative in �(m, n) corresponding to
any finite coloured linear order. We know the value of f (m, n + 1), and there are
only finitely many m-coloured linear orders of length at most f (m, n + 1). List them
all, and for each such A, using the effective procedure assumed inductively to exist,
calculate the value of ρn(A). Using Theorem 1.2, we can now tell which of these
are n + 1-equivalent, and hence select the one of minimal length and subject to that
lexicographically least for each ≡n+1-class. The greatest length of such a choice gives
the value of g(m, n + 1).

Finally, suppose we have an arbitrary finite m-coloured linear order A. Again
using the procedure assumed inductively to exist, we can calculate ρn(A), and hence
find which of the members of �(m, n + 1) just determined it is n + 1-equivalent to.

	


3 Finite m-coloured Linear Orderings up to 2-equivalence

We now deal with the special case n ≤ 2, as here all the calculations are a lot easier,
and we can obtain stronger conclusions, in fact for all coloured linear orders, not just
the finite ones. Furthermore, in the finite case, we are able to give precise values for
g(m, 1) and g(m, 2). We first justify the remark we have used in the previous section
on 1-equivalence classes, applied to this more general case.
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Lemma 3.1 For any f inite colour set C, the 1-equivalence classes of all C-coloured
linear orders correspond to the subsets of C. In fact, two C-coloured linear orders A
and B are 1-equivalent if and only if they are coloured by the same subset of C.

Proof If a colour appears in one of A and B but not the other, then I can imme-
diately win by playing a point of that colour, so that A and B are not 1-equivalent. If
however, A and B exhibit precisely the same colours, then whatever I plays in one
of A and B can be matched by I I. 	


We remark that as a special case of this lemma, for A 1-equivalent to B, if one of
A and B is non-empty, then so is the other (and in the monochromatic case, this is
also sufficient for 1-equivalence). We note that the order in which the colours appear
is also of no consequence.

The point of stating this lemma is that it is immediate that even for infinite
coloured linear orders, we have a fixed finite family of (short) finite representatives.
This is no longer true for n = 2, but at least here we may use Theorem 1.2 to deduce
what the possibilities are. They are still quite limited, and a key remark is that one
cannot detect density of the ordering in just 2 moves. A method which works well
in getting (reasonably) good bounds for g(m, 2) (with similar and related results for
general coloured linear orders) is to use induction on m rather than n, though in fact
in the finite case we argue directly to get the optimal value. We begin therefore by
looking at the monochromatic case (also given in [5]), partly because this may also
be done quite neatly by the use of characters.

Lemma 3.2 Any linear order is 2-equivalent to a unique order in the list 0, 1, 2, 3, ω,
ω∗, ω∗ + ω (where ω is the least inf inite ordinal, and ω∗ is the same set under the reverse
ordering).

Proof By Theorem 1.2 we just need to see what combinations of 1-characters can
arise. Since we are in the monochromatic case, Lemma 3.1 tells us that the only
possible characters are 0 and 1. Hence there are just four ordered pairs which can
arise, and hence 16 sets of ordered pairs. However, several of these are impossible.
In particular, there is a unique linear order in which 〈0, 0〉 arises, namely 1, since this
character tells us precisely that there is a point with nothing to left or right of it. In
addition we cannot have just either 〈0, 1〉 or 〈1, 0〉 on its own, for in the first case this
would say that there is a first but not last element, but any following element would
exhibit a different character, and similarly for the second. This leaves just 7 possible
sets, which correspond as shown to the 7 orders listed in the statement of the lemma:

∅: 0,
{〈0, 0〉}: 1,
{〈0, 1〉, 〈1, 0〉}: 2,
{〈0, 1〉, 〈1, 1〉}: ω,
{〈0, 1〉, 〈1, 0〉, 〈1, 1〉}: 3,
{〈1, 0〉, 〈1, 1〉}: ω∗,
{〈1, 1〉}: ω∗ + ω. 	


Before we derive the explicit value for g(m, 2) we need a fairly easy combinatorial
lemma. To formulate this, let us say that T is an m-conf iguration if it is a finite linear
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order of the form {xr : 1 ≤ r ≤ m} ∪ {yr : 1 ≤ r ≤ m} where x1 < x2 < . . . < xm and
y1 > y2 > . . . > ym and x1 and y1 are the least and greatest members of T respec-
tively. (We note that it is not required that xi �= y j.) We associate with any m-
configuration its ‘weight’ as follows. For each pair (u, v) of consecutive elements of
T, its weight is the greatest number r such that xr ≤ u and yr ≥ v. The weight of T is
then just the sum of the weights of all its consecutive pairs.

Lemma 3.3 The weight of any m-conf iguration is at most m2.

Proof Let us say that a pair (r, s) is out of order if xr ≥ ys. The proof goes by induction
on the number of pairs that are out of order. If no pairs are out of order then xr < ys

for all r and s, so

x1 < x2 < . . . < xm < ym < . . . < y2 < y1

The weights of the pairs, of which there are 2m − 1, are 1, 2, . . . , m − 1, m, m −
1, . . . , 2, 1 respectively, and their sum is 2

∑m−1
r=1 r + m = m2.

Now for the induction step, we suppose that there is at least one pair out of order
in T, and find a revised m-configuration T ′ having one less pair out of order. First
suppose that xr = ys for some r and s. Let T ′ be obtained from T by letting xr < ys

(all other relationships being unchanged). Let u and v be the greatest element of T
less than xr and the least element of T greater than xr respectively. (One of these is
not defined if we are at an endpoint.) Then the contribution to the weight of T ′ from
(u, xr) and (ys, v) is unchanged from what it was in T, and the contribution from
(xr, ys) is min(r, s). By induction hypothesis, the weight of T ′ is at most m2, and it
follows that the same is true for T. If there is no pair such that xr = ys then all the xr

and ys are distinct, and there is a pair such that xr > ys. For this value of r, choose the
smallest possible value of s, and this means that ys < xr < ys−1. For this value of s,
choose the least value of r, and this means that xr−1 < ys < xr < ys−1. Hence (ys, xr)

is a consecutive pair, and if (u, ys) and (xr, v) are consecutive, then xr−1 ≤ u and
v ≤ ys−1. Let T ′ be obtained from T by swapping xr and ys, and retaining all other
relationships. Then we see that the sum of the weights for the pairs (u, ys), (ys, xr) and
(xr, v) in T is min(r − 1, s) + min(r − 1, s − 1) + min(r, s − 1), but in T ′ this is replaced
by the pairs (u, xr), (xr, ys) and (ys, v), for which the sum of the weights is min(r −
1, s) + min(r, s) + min(r, s − 1). Since by induction hypothesis, the weight of T ′ is at
most m2, and the weight of T is less than that for T ′, it follows that the weight of T is
also at most m2. 	


Theorem 3.4 For each m, g(m, 1) = h(m, 1) = m and g(m, 2) = h(m, 2) = m2 + 2m.

Proof First note that the value of g(m, 1) follows at once from Lemma 3.1, and this
is also equal to h(m, 1) since any finite m-coloured linear order has a substructure in
which the same colours all appear exactly once.

We first show that g(m, 2) ≤ m2 + 2m and afterwards verify equality. So we let A
be a finite m-coloured linear order, which is of minimal length in its ≡2-class, and we
suppose that all the m colours actually arise. For 1 ≤ r ≤ m let xr and yr be the least
and greatest points in A such that A≤xr (A≥yr respectively) is coloured by exactly r
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colours. Thus for instance x1 is the least point of A, y1 is the greatest, and it is clear
that x1 < x2 < . . . < xm and y1 > y2 > . . . > ym.

To illustrate the idea, we first suppose that xm < ym. Then we notice that all
points of (xr, xr+1) have the same character, since on the left, precisely the same
set of colours (of size r) arises for each of the points, and on the right, all colours
arise. Similarly, all points of (xm, ym) have the same character, and so do all points of
(yr+1, yr). So if we replace each of these intervals by a set of points in which precisely
the same set of colours arises, but only once each, then by Theorem 1.2, the result is
2-equivalent to A. Since A is minimal in its ≡2-class, this replacement actually results
in no change, and we deduce that |A| ≤ 2m + 2

∑m−1
r=1 r + m = m2 + 2m as desired.

The main complication in the proof comes about if ym ≤ xm. But here we see
that the subset T = {xr : 1 ≤ r ≤ m} ∪ {yr : 1 ≤ r ≤ m} of A is an m-configuration,
and furthermore, the optimality of A in its ≡2-class tells us that on any interval of
consecutive points of T, the greatest number of points that A can have is equal
to its weight (since the weight tells us the greatest number of colours available for
this interval, and we can only have one occurrence of each). Therefore the number
of points in A is at most equal to 2m (the greatest size of T) added to its weight.
By Lemma 3.3 this is at most m2 + 2m. (This was done explicitly in the previous
paragraph in the easiest case.)

Finally we establish optimality. Let C = {cr : 1 ≤ r ≤ m}, and let the coloured
linear order A be the union of ‘blocks’ L1 < L2 < . . . < Lm−1 < Lm < M < Rm <

Rm−1 < . . . < R2 < R1, where |Lr| = r having points coloured c1, c2, . . . , cr (in that
order), |M| = m with points coloured c1, c2, . . . , cm, and |Rr| = r with points coloured
cm−r+1, . . . , cm. Then |A| = 1

2 m(m + 1) + m + 1
2 m(m + 1) = m2 + 2m. So we just

have to see that all points of A realize distinct characters which will mean by
Theorem 1.2 that it is minimal in its ≡2-class.

Now the points of M have distinct colours, and they have all colours both to left
and right. The points of Lr have all colours to the right, and those of Rr have all
colours to the left. However, the points of Lr do not have any cr-coloured point
to the left, and so do not have the same character as any point of M or Rs. Now
let x ∈ Lr and y ∈ Ls where r < s. Then y has a cr-coloured point to the left (the
maximum element of Lr) but x does not. So x and y have different characters.
Distinct members of the same Lr have different colours. Similar arguments apply
to M and Rr, concluding the proof.

Once again, the fact that g(m, 2) = h(m, 2) follows from the fact that we can cut
down any given A to its optimal length by passing to a substructure. 	


Now we move on to the general (not necessarily finite) case.

Theorem 3.5 For any linear order A, coloured by m colours, there is a 2-equivalent
m-coloured linear order having order-type of the form A0 + A1 + . . . + Ak−1 for some
f inite k, where at most m of the Ai are ω∗, at most m of them are ω, and the rest are
f inite. Conversely, there is an m-coloured linear order of order-type m × ω∗ + m × ω

which is not 2-equivalent to any coloured order of smaller order-type.

Proof We remark that the notation used here for lexicographic products is that X ×
Y stands for ‘X copies of Y’, which is contrary to that used for ordinals (which is the
reversed lexicographic order, as in [2]).
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We begin by proving by induction on m that A is 2-equivalent to a coloured
linear order which is a subset of (2m − 1) × Z. For m = 1, this follows by Lemma
3.2 (remembering that ω∗ + ω ∼= Z).

Now we assume the result for m, and let A be (m + 1)-coloured. Let L and R
be the sets of elements a of A such that A≤a, A≥a respectively are coloured by
≤ m colours. By induction hypothesis, we may suppose that each of L and R has
order-type at most (2m − 1) × Z. If L ∪ R = A then the order-type of A is at most
2 · (2m − 1) × Z ≤ (2m+1 − 1) × Z. Otherwise, let M = A − (L ∪ R). We replace M
by M1 which is given by four possible cases:

If M has no greatest or least, then M1 is a copy of Z, coloured periodically by
the colours which appear as colours of elements of M (so that if the colours are
{ci : 0 ≤ i < k} then for each n ∈ Z, kn + i is coloured by ci, for instance).

If M has a least but no greatest, then M1 is a copy of ω, whose first point is coloured
as the first point of M, and after that it is coloured periodically by the colours which
appear as colours of elements of M.

If M has a greatest but no least, then M1 is a copy of ω∗, whose last point is
coloured as the last point of M, and before that it is coloured periodically by the
colours which appear as colours of elements of M.

If M has a least and greatest, then M1 is finite, with least and greatest coloured
as the corresponding elements of M, and otherwise, just one point of each possible
colour (as in the proof of Theorem 3.4).

We can now appeal to Theorem 1.2 to see that the resulting coloured ordering is
2-equivalent to A. This is because for all points a of M except the greatest and least
(if they exist) the value of 〈[A<a]1, [A>a]1〉 is the same, as all colours appear to their
left and right, and so we just have to retain either of the endpoints if present, and
ensure that all colours appear in between. If neither endpoint exists then we have to
insert an ordering of type Z (as we must avoid inserting an endpoint) and similarly
if there is just one endpoint (with ω∗ or ω). Since the order-type of M1 is at most Z,
it also follows that we have found a coloured ordering as required of order-type at
most (2m+1 − 1) × Z.

Now therefore assume that A ⊆ (2m − 1) × Z, and write A as a sum of the form
A0 + A1 + . . . + Ak−1 where each Ai is either finite, or ordered in type ω or ω∗.
Using similar arguments as above, we can further reduce A by cutting each Ai down
so that at most m of the Ai are of type ω, and at most m of them are of type ω∗. If
Ai is finite, then we make no change. We concentrate on showing how to handle a
typical Ai which is of type ω (and ω∗ is done similarly). Consider the set Ci of colours
which occur cofinally in Ai. If some member of Ci does not occur as the colour of
any point of A greater than Ai, then we again leave Ai unchanged. Otherwise, we
form A′

i by removing a final segment of Ai coloured only by members of Ci, and in
such a way that there are x < y < z in A′

i where z is the greatest member of A′
i such

that Ci is exactly equal to the set of colours appearing in each of (x, y] and (y, z].
The main point is to show that if A′ is the result of replacing Ai by A′

i (and leaving
all other A js unchanged), then A ≡2 A′. For this we appeal to Theorem 1.2, and it
suffices to remark that for each point a of A, there is some a′ ∈ A′ having the same
colour as a such that A<a and A′<a′

exhibit the same colours, as do A>a and A′>a′
,

and similarly for the converse statement. If a ∈ A′, then we may take a′ = a (and this
also works for the converse), and if a ∈ A − A′, then we may take a point lying in
(y, z].
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By repeating the argument just given, we may suppose that for each i, if Ai has
order-type ω, then some colour which occurs cofinally in Ai does not occur to the
right of Ai, and similarly, if Ai has order-type ω∗, then some colour which occurs
coinitially in Ai does not occur to the left of Ai. Now for each colour c there is at
most one value of i such that c occurs cofinally in Ai and not to the right of Ai, and
it follows that there are at most m such values of i such that Ai has order-type ω, and
similarly for Ai of order-type ω∗.

To establish the final sentence, we can just consider each of the m copies of each
of ω∗ and ω to be coloured by distinct colours. 	


We remark that where we have replaced M by an ordering coloured periodically,
in fact any colouring in which all the colours of M (except of the least and greatest
points if they exist) appear coterminally (or cofinally/coinitially) would do just as
well. The reason for colouring periodically is to give an explicit solution, and so that
we have a finite and ‘easily described’ set of representatives. (One could formalize
this by saying that the function producing the representative is ‘computable’ in an
appropriate sense.)
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