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In this paper, we give a classification of (finite or countable) ℵ0-categorical coloured linear orders, generaliz-
ing Rosenstein’s characterization of ℵ0-categorical linear orderings. We show that they can all be built from
coloured singletons by concatenation and Qn-combinations (for n ≥ 1). We give a method using coding trees
to describe all structures in our list.
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1 Introduction
A coloured linear ordering is a triple (A,<, F ) where (A,<) is a linear order and F is a mapping from A onto a
set C which we think of as a set of colours. We shall sometimes simply write A instead of (A,<, F ). The orbit
of an n-tuple (a1, a2, . . . , an) of members of A is the set of all its images under the action of the automorphism
group of A (where automorphisms are required to preserve colour as well as order), and an n-orbit of A is the
orbit of some n-tuple. We also say that A is almost n-tuply transitive if it has a finite number of n-orbits. In
particular, if n = 2, we say that A is almost doubly transitive, and A is homogeneous if any isomorphism between
finite substructures can be extended to an automorphism.

An n-type is a realizable set of formulae having free variables among x1, x2, . . . , xn for some n ≥ 1. We note
that an n-type corresponds to an n-orbit, and we shall therefore use the two terms interchangeably. Let Sn(T )
denote the set of complete n-types of a theory T . Engeler, Ryll-Nardzewski and Svenonius independently proved
that a theory T is ℵ0-categorical if and only if every Sn(T ) is finite.

Using the Engeler-Ryll-Nardzewski-Svenonius Theorem, Rosenstein [4] characterized which linear orders
have ℵ0-categorical theories as follows. Let Δ be the smallest class of order-types containing 1, and closed under
concatenation of finitely many elements, and under ‘shuffle’ (which is the same as our ‘Qn-combination’ – see
below).

Theorem 1.1 (Rosenstein) A complete theory T of linear orderings is ℵ0-categorical if and only if it has a
model whose order-type is in Δ.

It is our goal in this paper to generalize Theorem 1.1 to coloured linear orderings. As in [1] and [2] we are
able to describe the structures in terms of ‘coding trees’. This is not essential in the finitely coloured case, but still
provides a clear way of describing all the examples. In [2] the case where the colour set is infinite is considered,
and there coding trees are indispensible, but for us it is necessarily finite, because if the set of colours is infinite
then so is the set of 1-types, contrary to ℵ0-categoricity.

The n-coloured version Qn of the rationals is the set Q of rational numbers, together with a colouring function
F : Q −→ C where |C| = n ≥ 1, such that between any two distinct points, there are points of all possible
colours. (See [1] for instance.) We write Qn(Z0, Z1, . . . , Zn−1) for the countable coloured linear ordering
resulting from replacing all points coloured ci ∈ C by Zi for i = 0, 1, . . . , n − 1 where Z0, Z1, . . . , Zn−1

are given coloured linear orders and C = {c0, c1, . . . , cn−1}. We shall refer to Qn(Z0, Z1, . . . , Zn−1) as a
Qn-combination. If Z0, Z1, . . . , Zn−1 are also pairwise disjoint, then their concatenation is the coloured linear
order

⋃
i∈n Zi ordered by x < y if x, y ∈ Zi and x < y for some i or x ∈ Zi and y ∈ Zj where i < j, coloured

by the union of the colourings on the individual Zi.
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2 The main proof

We first introduce two equivalence relations ∼1 and ∼2 on any coloured linear order A (the first of which applies
to any linear order, not necessarily coloured) to carry out the ‘condensation’ process needed in our classification.

Equivalence relation ∼1: Let ∼1 be given by x ∼1 y if x ≤ y and [x, y] is finite or y ≤ x and [y, x] is finite.
We note that the ∼1-classes are clearly convex, and so A/ ∼1 receives an induced linear order from that on A.
Although this can be carried out for any linear order, in our case we want it to be coloured, and the way that this
is done is explained below.

Lemma 2.1 For any linear ordering A, ∼1 is an equivalence relation.

P r o o f. Reflexivity and symmetry are immediate.
For transitivity, suppose x ∼1 y and y ∼1 z, and without loss of generality, suppose that x ≤ z. Then if

z ≤ y, [x, z] ⊆ [x, y], if x ≤ y ≤ z, [x, z] ⊆ [x, y] ∪ [y, z], and if y ≤ x, then [x, z] ⊆ [y, z]. In each case, [x, z]
finite follows from [x, y] and [y, z] finite. So x ∼1 z.

Lemma 2.2 If A is an ℵ0-categorical coloured linear ordering, then all the ∼1-classes are finite, of bounded
size.

P r o o f. From the definition of ∼1, it follows that its classes are finite or have order-type ω, ω∗ or ω∗ + ω,
where ω∗ is the reverse ordering of ω. We note that ω, ω∗ and ω∗ + ω cannot arise, since then A would have
infinitely many 2-types contrary to ℵ0-categoricity, so the classes are finite. The fact that their sizes are bounded
also follows from the finiteness of the number of 2-types.

This result enables us to define a colouring on A/∼1 in a natural way. Since A is ℵ0-categorical, there
are finitely many orbits of singletons (1-types) and from this it follows that there are finitely many orbits of
∼1-classes. We take these as the colours on A/∼1, and then each ∼1-class is coloured by its isomorphism type.

Lemma 2.3 If L is an almost doubly transitive (coloured) linear ordering, then L is almost n-tuply transitive
for each n ≥ 2.

P r o o f. Let the number of 2-orbits of pairs 〈x, y〉 in L with x < y be q. We shall show that the number of
orbits of strictly increasing n-tuples in L is at most qn−1, which clearly implies that the number of n-orbits is
finite. Suppose that a1 < a2 < · · · < an and b1 < b2 < · · · < bn are such that for each j ≤ n−1, 〈aj , aj+1〉 and
〈bj , bj+1〉 are in the same 2-orbit. Let hj be an automorphism (colour-preserving) of L such that hj(aj) = bj and
hj(aj+1) = bj+1. Since hj(aj+1) = hj+1(aj+1) = bj+1, we can define an automorphism h of L by patching h1

on (−∞, a2], h2 on (a2, a3], . . ., and hn−1 on (an−1,+∞). It follows that 〈a1, a2, . . . , an〉 and 〈b1, b2, . . . , bn〉
are in the same n-orbit. Hence the n-orbit of 〈a1, a2, . . . , an〉 is fully determined by the sequence of 2-orbits of
〈a1, a2〉, 〈a2, a3〉, . . . , 〈an−1, an〉. Hence L has at most qn−1 orbits of increasing n-tuples.

Lemma 2.4 If A is an ℵ0-categorical coloured linear ordering, then under the induced ordering and the
colouring by orbits of ∼1-classes, A/∼1 is also ℵ0-categorical.

P r o o f. By definition, the 1-types of A/∼1 are precisely the orbits of ∼1-classes of A, and there are finitely
many of these. One deduces from the fact that A has finitely many 2-types that the number of 2-types of pairs
〈(a)∼1

, (b)∼1
〉 in A/∼1 such that (a)∼1

< (b)∼1
is also finite. By Lemma 2.3 A/∼1 is n-tuply transitive for

each n ≥ 1, and hence is ℵ0-categorical.

Lemma 2.5 For any linear ordering A, A/∼1 is either a singleton or is densely ordered by the induced
relation.

P r o o f. Let (x)∼1
< (y)∼1

in A/ ∼1. Since x ∼1 y, [x, y] is infinite, but as (x)∼1
∪ (y)∼1

is finite by as-
sumption, there must be some z ∈ [x, y]− ((x)∼1

∪ (y)∼1
). This z is ∼1-inequivalent to both x and y, so

(x)∼1
< (z)∼1

< (y)∼1
.

Equivalence relation ∼2: Let C ′ be a subset of the colour set C of A. Let x ∼2 y if either x = y or all
points of [x, y] if x ≤ y or of [y, x] if y ≤ x are coloured by members of C ′. Thus as C ′ varies we get different
equivalence relations. Note that all non-singleton equivalence classes must consist of points all of whose colours
lie in C ′.
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Lemma 2.6 For any C-coloured linear ordering A, and subset C′ of C, ∼2 is an equivalence relation.

P r o o f. Clearly ∼2 is reflexive and symmetric. For transitivity, suppose that x ∼2 y ∼2 z. If x = y or y = z
or x = z, then x ∼2 z is immediate, so we suppose all are distinct. Hence all points between x and y and between
y and z have colours in C′. Hence the same applies to all points between x and z, so x ∼2 z.

Once again the equivalence classes are convex and so ∼2 induces a linear ordering on A/ ∼2. (A special case
of ∼2 is the one where x ∼2 y if x = y or x ≤ y and [x, y] is monochromatically c or y ≤ x and [y, x] is
monochromatically c, which is obtained by taking C′ = {c} of size 1.) The quotient A/ ∼2 becomes a coloured
linear ordering with colour set C −C ′ ∪ {C ′} by retaining the colours for points whose colours do not lie in C′,
and by colouring non-trivial ∼2-classes by C ′ itself (which is now regarded as a single colour).

Lemma 2.7 For any countable dense C-coloured linear ordering A, and non-empty subset C′ of C which
is minimal subject to ∼2 being a non-trivial equivalence relation, each ∼2-class is isomorphic to QC′ (possibly
with endpoints adjoined).

P r o o f. Let x < y lie in a ∼2-class of A, and suppose for a contradiction that for some c ∈ C′, no point
of (x, y) is coloured c. Since A is dense, (x, y) is non-empty, so C′ − {c} is also non-empty. Let ∼′

2 be the
equivalence relation obtained from C′ − {c} in place of C ′. Then there is a non-trivial equivalence class, since
all points of (x, y) are ∼′

2-equivalent, contrary to minimality of C ′. Hence each colour in C′ occurs densely
throughout the ∼2-class, and by back-and-forth it is isomorphic to QC′ (possibly with endpoints adjoined).

Lemma 2.8 Any countable Qn-combination or concatenation of finitely many ℵ0-categorical coloured linear
orderings is also ℵ0-categorical.

P r o o f. For concatenations it suffices to do this for two orderings, and then repeat. So we let A and B be
disjoint ℵ0-categorical coloured linear orderings; we need to show that A ∪B is also an ℵ0-categorical coloured
linear order where A < B. Let a1 and a2 be the numbers of 1-orbits (1-types in our case) and 2-orbits of pairs
〈x, y〉 in A with x < y and let b1 and b2 be the similar numbers for B. Thus A ∪B has at most a1 + b1 1-orbits.
By Lemma 2.3 it thus suffices to consider the 2-orbits of pairs 〈x, y〉 in A ∪ B with x < y. The list of orbits of
such pairs in A ∪ B then comprises a2 2-orbits on A, b2 2-orbits on B and a1b1 in the case where x ∈ A and
y ∈ B (a1b1 is precisely the number of 2-orbits on A × B). Therefore the corresponding number of 2-orbits on
A ∪B is at most a2 + b2 + a1b1. By Lemma 2.3 and the Engeler-Ryll–Nardzewski-Svenonius Theorem, A ∪B
is ℵ0-categorical.

Now consider a Qn-combination of coloured orderings A0, A1, . . . , An−1 where each Ai has a′i 1-orbits and
ai 2-orbits on increasing pairs. By the same method as above, we see that Qn(A0, A1, . . . , An−1) has

∑n−1
i=0 a′i

1-orbits and at most
∑n−1

i=0 ai +
∑

i,j a
′
ia

′
j 2-orbits (using the fact that Qn is itself homogeneous). Once again

we conclude by appealing to Lemma 2.3.

We can now give our main theorem.

Theorem 2.9 A finite or countable coloured linear ordering (A,<, F ) is ℵ0-categorical if and only if it can
be built up in finitely many steps from coloured singletons by using concatenation and Qn-combinations for finite
n ≥ 1.

P r o o f. In one direction this follows immediately from Lemma 2.8 and the fact that any coloured singleton
is trivially ℵ0-categorical.

Conversely, suppose that (A,<, F ) is countable and ℵ0-categorical. We use ∼1 and ∼2 to analyze A. We
define An having colour set Cn inductively thus, so that each An is a partition of A into convex subsets. Let
A = A0 (or strictly speaking, {{x} : x ∈ A}) and C0 = C. Suppose that An and Cn have been defined. If ∼1 is
non-trivial on An (which means that it is not a singleton, and is not dense), then we let An+1 = An/ ∼1 (strictly
speaking, the partition of A induced by this) with the colour set Cn+1 obtained as after the proof of Lemma 2.2
from Cn. If An is dense, then there is some choice of non-empty subset C′ of Cn such that ∼2 is non-trivial
on An (for instance, Cn itself), and we choose one such C′ of least size, and let An+1 = An/ ∼2 (again with the
naturally induced colouring, so that Cn+1 = Cn −C ′ ∪ {C ′}). Thus as n increases we are identifying more and
more elements of A.

We shall show that the sequence A0, A1, A2, . . . terminates in finitely many steps. Note that the elements of
An+1 are convex subsets of An and hence the elements of An for each n are convex subsets of A. Choose any
x ∈ A, and let (x)n be the element of An that x belongs to. Thus {x} = (x)0 ⊆ (x)1 ⊆ (x)2 ⊆ · · · . Whenever
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(x)n = (x)n+1 we pick an element yn of (x)n+1 − (x)n. Now each An is defined from (A,<, F ), so is fixed by
its automorphism group. Hence the stabilizer of x fixes each (x)n (setwise), and so if m < n and ym and yn are
both defined, since ym ∈ (x)n and yn ∈ (x)n, they are in different orbits of the stabilizer of x. Hence the pairs
〈x, ym〉 and 〈x, yn〉 have different 2-types. As there are only finitely many 2-types, yn is defined for only finitely
many n, and so the chain {x} = (x)0 ⊆ (x)1 ⊆ (x)2 ⊆ · · · is eventually constant. Let the first point at which
it becomes constant be n(x). Since there are only finitely many 1-types, as x varies, there are only finitely many
values of n(x), and hence the sequence A0, A1, A2, . . . terminates after finitely many steps, at AN say. It follows
that AN is a singleton.

Now we can show by induction on N that A is built up in finitely many steps from coloured singletons by
concatenation and Qn-combinations. For N = 0 this is clear, since then A is a coloured singleton. Other-
wise, A1 = A/∼1 or A/∼2. Consider the first case. By definition, the colours on A/∼1 are given by the
orbits of ∼1-classes of A, and there are just finitely many of these. By induction hypothesis, since the sequence
starting from A1 has length just N − 1, A1 can be built up from coloured singletons by concatenation and
Qn-combinations, where these colours are in C1. But each of these ‘colours’ in C1 is built up from coloured
singletons by concatenation, and putting these together gives a way of building up A itself from coloured sin-
gletons in C. If however A1 = A/∼2, where C ′ ⊆ C1 is the (minimal) set of colours used in defining ∼2,
then by Lemma 2.7 A is obtained from A1 by replacing each point of colour C′ by a copy of QC′ , possibly
with one or both endpoint, and so in this case too, A is built up from coloured singletons by concatenation and
Qn-combinations (since if one or both endpoint is required, they can again be adjoined by concatenation).

This process will be elucidated in the next section by the use of coding trees.

3 Coding trees

We conclude by giving a natural tree representation for the structures in our class, which relates them to the
1-transitive (finitely-)coloured linear orders studied in [1]. Here, a tree is a finite partially ordered set (χ,≺) such
that for every x, y ∈ χ, there is a z ∈ χ with x � z and y � z and such that for every x ∈ χ, {y ∈ χ : x � y}
is linearly ordered. The greatest element of a tree is called its root, r; and the minimal elements are called the
leaves. The levels of a tree tell us the number of steps required to backtrack to the root.

If x, y ∈ χ, we say that y is a child of x or x is a parent of y and write y ≺≺ x, if y ≺ x and there is no
z ∈ χ such that y ≺ z ≺ x. Distinct children of the same parent are called siblings. A labelled tree (χ,≺, ξ)
is a tree (χ,≺), together with a function ξ : χ −→ L, where L is a set of ‘labels’. The labels will be ordered
pairs ξ(x) = (ϕ(x), η(x)), where ϕ(x) (except at leaves) tells us how the coloured linear ordering associated
with that vertex is constructed from those associated with its children, and η(x) tells us what the colour set is for
that coloured linear order. The ordered pair at a leaf is (1, {c}) for some c ∈ C.

A coding tree has the form (χ,≺, ξ, ψ), where (χ,≺, ξ) is a labelled tree in the above sense with every label
an ordered pair, and:

(a) ψ is a linear ordering of the branches of χ induced by a linear ordering of the children of each vertex.

(b) If x ≺ y and y = r, then either x has a sibling or y has a sibling.

(c) If x has only one child, then the first entry ϕ(x) of its label is Q1.

(d) If x has n ≥ 2 children, then ϕ(x) is Qn or n.

(e) If x = r and x is not a leaf, then at least one of the following holds:

(i) it has no sibling, and ϕ(x) = n, where n is its number of children;

(ii) it has a sibling, and only one child, and ϕ(x) = Q1;

(iii) the first label of its parent is n, for 2 ≤ n < ω and ϕ(x) = Qm, for some m ≥ 2;

(iv) x has a sibling and n ≥ 2 children and the first label of its parent is Qm with 2 ≤ m < ω and ϕ(x) = n;

(v) the first label of its parent is k and it has a sibling labelled Qm and ϕ(x) = n where 2 ≤ k, n < ω and
1 ≤ m < ω.

(f) If x ∈ χ is a leaf, then ϕ(x) = 1.

(g) The second member η(x), of the label at x is a subset of the set of colours C such that η(r) = C, if x is a
leaf, then η(x) is a singleton, and if x is not a leaf, then η(x) is the union of η(y) for the children y of x.
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A coding tree (χ,≺, ξ, ψ) encodes the coloured linear order (A,<, F ) if we can assign coloured linear orders
to the vertices of χ by a function f in such a way that f(r) = (A,<, F ), for each x the colours occurring in f(x)
are the members of η(x), a leaf with second co-ordinate c is assigned a singleton linear order with that colour,
and if x is a non-leaf vertex, f(x) is obtained from {f(y): y a child of x} according to ϕ(x) as follows:

If ϕ(x) is Qn, where 1 ≤ n < ω, and y0, y1, . . . , yn−1 are its children in the order given by ψ, then
f(x) = Qn(f(y0), f(y1), . . . , f(yn−1)), if ϕ(x) is n, where 2 ≤ n < ω, and y0, y1, . . . , yn−1 are its children in
the order given by ψ, then f(x) is the concatenation of f(y0), f(y1), . . . , f(yn−1).

We remark that in [1], it was demanded that the children of a particular vertex have disjoint colour sets (in
view of the 1-transitivity condition). However, for us the children can have intersecting colour sets. The main
case in [1] which is absent here is the lexicographic product with a general countable 1-transitive linear order Z.
Because of ℵ0-categoricity, the only instance of this which survives here is where Z = Q = Q1, and we may if
we wish view the lexicographic product as Q1(f(y0)), thus fitting in with the general Qn clause.

Theorem 3.1 Any coding tree χ encodes a coloured linear ordering and this is a finite or countable ℵ0-
categorical coloured linear ordering.

P r o o f. It follows from the definition of ‘coloured linear order encoded’ by a coding tree, that the coloured
linear order encoded by χ can be built up from coloured singletons using concatenations and Qn-combinations
in finitely many steps, and hence by Theorem 2.9 is ℵ0-categorical.

Theorem 3.2 Any finite or countable ℵ0-categorical coloured linear ordering (A,<, F ) can be represented
by a coding tree.

P r o o f. By Theorem 2.9, A can be built up in finitely many steps from coloured singletons using concate-
nation and Qn-combinations. This enables us to give an inductive construction of the tree. For a coloured
singleton we use a tree with one element labelled (1, {c}) where A is coloured c. Otherwise, if A is built up as a
Qn-combination from A0, . . . , An−1, each Ai is built up in fewer steps than A, so we have coding trees for each
of these by induction hypothesis, and the coding tree for A has label (Qn, C) at the root, with n children, which
have the coding trees for A0, . . . , An−1 below them. We treat the case of concatenation similarly.

In summary, we can say that the list of structures we have presented here differs from Rosenstein’s in that we
can start with coloured singletons, rather than just singletons. Compared with the coloured orders given in [1]
and [2], the ones here are richer in that in performing the two operations of concatenation and Qn-combinations,
we do not require the orderings that we are combining to have disjoint colour sets, but they are more restricted in
the sense that the set of colours has to be finite.

Acknowledgements The first author thanks Commonwealth Scholarship Commission (UK) for the financial and other
welfare support extended to him throughout his Ph.D thesis-writing period at the University of Leeds under the supervision
of the second author.

References

[1] G. Campero-Arena, J. K. Truss, Countable, 1-transitive, coloured linear orderings I. J. Combi. Theory Series A 105,
1 – 13 (2004).

[2] G. Campero-Arena, J. K. Truss, Countable, 1-transitive, coloured linear orderings II. Fundamenta Mathematica 183,
185 – 213 (2004).

[3] J. G. Rosenstein, Linear Orderings (Plenum Press, 1982).
[4] J. G. Rosenstein, ℵ0-categoricity of linear orderings. Fundamenta Mathematica 64, 1 – 5 (1969).

www.mlq-journal.org c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


