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Abstract

The celebrated Cwikel-Lieb-Rozenblum inequality gives an upper estimate
for the number of negative eigenvalues of Schrödinger operators in dimension
three and higher. The situation is much more difficult in the two dimensional
case. There has been significant progress in obtaining upper estimates for
the number of negative eigenvalues of two dimensional Schrödinger opera-
tors on the whole plane. In this thesis, we present upper estimates of the
Cwikel-Lieb-Rozenblum type for the number of eigenvalues (counted with
multiplicities) of two dimensional Schrödinger operators lying below the es-
sential spectrum in terms of the norms of the potential. The problem is
considered on the whole plane with different supports of the potential (in
particular, sets of dimension α ∈ (0, 2] and on a strip with various bound-
ary conditions. In both cases, the estimates involve weighted L1 norms and
Orlicz norms of the potential.
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Chapter 1

Introduction

1.1 Background

Given a non-negative L1
loc function V on Rn, consider the Schrödinger type

operator on L2(Rn)

HV := −∆− V, V ≥ 0, (1.1)

where ∆ :=
∑n

k=1
∂2

∂x2k
. Precisely, one can define HV via the quadratic form

EV,Rn [u] =

∫
Rn
|∇u(x)|2 dx−

∫
Rn
V (x)|u(x)|2 dx,

Dom(EV,Rn) =
{
u ∈ W 1

2 (Rn) ∩ L2(Rn, V (x)dx)
}
.

Under certain assumptions about V , HV is well defined and a self-adjoint
operator on L2(Rn) and its essential spectrum is [0,∞) (see e.g., [50, § 6.4]).
The negative spectrum of HV consists of eigenvalues of finite multiplicity
with zero as the only possible accumulation point. A general problem arising
from Physics is to estimate the number of these negative eigenvalues (counted
with multiplicities) in terms of the norms of V which is the subject of this
thesis for n = 2. Denote by N−(EV,Rn) the number of negative eigenvalues of
HV counted with multiplicity.

For n ≥ 3, according to the celebrated Cwikel (1977)-Lieb (1976)-Rozenblum
(1972) inequality, N−(EV,Rn) is estimated above by

N−(EV,Rn) ≤ Cn

∫
Rn
V (x)n/2 dx (1.2)

(see, e.g., [3], [4], [40] and the references therein). In this case (n ≥ 3),
N−(EV,Rn) is zero provided the integral in the right hand side of (1.2) is
small enough.
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Often one inserts a parameter α > 0 called the coupling constant and studies
the behaviour of N−(EαV,Rn) as α −→ +∞. For nice potentials, e.g V ∈
C∞0 (Rn), the Weyl-asymptotic formula

lim
α→+∞

α−n/2N−(EαV,Rn) =
Vol{x ∈ Rn : |x| ≤ 1}

(2π)n

∫
Rn
V (x)n/2dx (1.3)

holds (see, e.g., [7, Theorem 5.1]). We say that an estimate is semi-classical,
if it yields

N−(EαV,Rn) = O
(
αn/2

)
as α→ +∞. (1.4)

The conditions guaranteeing (1.3) and (1.4) depend on the dimension. If
V ∈ Ln/2(Rn), n ≥ 3, (1.2) is optimal, that is, V ∈ Ln/2(Rn) is a necessary
and sufficient condition for (1.4) and (1.3) to hold (see, e.g., [40]). This shows
that N−(EαV,Rn) is estimated through its own asymptotics.

For n = 1, there is no analogue of (1.2). It does only exist for potentials that
are monotone on R+ and R−. This was obtained simultaneously and inde-
pendently in 1965 by F. Calogero [11] and J.H.E. Cohn [14]. Finitiness of the
right-hand side of (1.3) for n = 1 is only sufficient for N−(EαV,R1) = O (

√
α).

The necessary and sufficient condition for the latter is given in terms of the
“weak l1 -space” (see, e.g., [45]). For any non-trivial potential N−(EV,R1) ≥ 1.

Consider the following integral∫
Rn
V (x)|u(x)|2 dx , u ∈ W 1

2 (Rn). (1.5)

It follows from the Sobolev embedding theorem (see, e.g., [1, Theorem 5.4])
that W 1

2 (Rn) ↪→ Lq(Rn) if 2 ≤ q <∞ and 1− n
2

+ n
q
≥ 0. Let

1− n

2
+
n

q
= 0. Then q =

2n

n− 2
, n ≥ 3.

Thus u ∈ W 1
2 (Rn) implies u ∈ L

2n
n−2 (Rn) and |u|2 ∈ L

n
n−2 (Rn). Let p = n

n−2
.

Then the Hölder inequality implies that (1.5) is finite if V ∈ Lp′(Rn), where
p′ is the conjugate exponent of p i.e., 1

p
+ 1

p′
= 1. We have p′ = n

2
implying

that (1.5) is finite if V ∈ Ln
2 (Rn), which explains why the right hand side of

(1.2) might work.
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Putting n = 2 in the above argument formally, one gets q =∞, p =∞,
p′ = 1 and V ∈ L1(R2). Unfortunately, W 1

2 (R2) is not embedded in L∞(R2),
V ∈ L1(R2) does not guarantee that (1.5) is finite, and (1.2) fails. However,
W 1

2 (Rn) ↪→ Lq(Rn), ∀q ∈ [2,+∞) and there are estimates for N−(EV,R2)
involving

∫
R2 |V (x)|r dx, ∀r > 1 (see e.g.,[7], [9], [17], [31]). More precisely,

W 1
2 (R2) is embedded in a space of exponentially integrable functions which

sits between L1(R2) and Lp(R2), p > 1. This gives rise to estimates for
N−(EV,R2) involving a norm of V weaker than ‖V ‖Lr , r > 1, namely, the
Orlciz L logL norm (see § 1.3).
In addition, L1-integrability doesn’t provide enough decay of V at infinity
and thus one needs stronger weighted L1 norms of V with weights growing
as |x| −→ ∞. Logarithmic growth of the weights is enough in R2, and |x1|
is sufficient in case of the strip. Most known upper estimates for N−(EV,R2)
have terms of these two types i.e., weighted L1 and Lr , r > 1 norms of V , see
for example the estimates obtained by A. Laptev and M. Solomyak [31] and
M. Solomyak [44]. In this thesis, we present estimates of a similar structure.

For any non-zero potential V ≥ 0 and n = 2, (1.1) has at least one neg-
ative eigenvalue as in the one-dimensional case and therefore (1.2) cannot
hold. More importantly, no estimate of the type

N−(EV,R2) ≤ const +

∫
R2

V (x)W (x) dx

can hold, provided the weight function W is bounded in a neighborhood of
at least one point (see, e.g., [17, Proposition 2.1]). On the other hand,

N−(EV,R2) ≥ const

∫
R2

V (x) dx.

This result is due to A. Grigor’yan, Yu. Netrusov and S.-T. Yau [18] in 2004.
It is well known that the lowest possible (semi-classical) rate of growth of
N−(EαV,R2) is

N−(EαV,R2) = O (α) as α→ +∞ (1.6)

( see e.g., [9], [31], [44]).
This agrees with the Weyl-asymptotic formula

lim
α→+∞

α−1N−(EαV,R2) =
1

4π

∫
R2

V (x)dx (1.7)

that is satisfied if the potential is nice. However, unlike the case n ≥ 3, (1.6)
doesn’t guarantee the existence of lim

α→+∞
α−1N−(EαV,R2) and even if the limit
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exists, it may be different from the right hand side of (1.7). The exhaustive
description of the classes of potentials on R2 such that (1.6) or (1.7) is satis-
fied, is unknown till now. More upper estimates for N−(EV,R2) can be found
in ([18], [43], [44], [45]) and the references therein. Estimates for the number
of negative eigenvalues of two dimensional magnetic Schrödinger operators
can be found for example in ([3], [4], [5], [25]) and the references therein.
However, such type of operators are not considered in this thesis.

E. Shargorodsky [42], in his paper on an estimate for the Morse index of
a Stokes wave obtained an estimate for N−(EV,R2) with V supported by a
bounded Lipschitz curve. Initially, an aim of this thesis was to extend this
result to unbounded Lipschitz curves which is by no means trivial since it
involves decay at infinity. However, we managed to do this in a more general
setting that covers potentials locally integrable on R2, potentials supported
by curves and sets of fractional dimension α ∈ (0, 2]. This is the work of
Chapter 3.

We also consider the problem on a strip. Previously, A. Grigor’yan and
N. Nadirashvili [17] considered this problem on strip with Neumann bound-
ary conditions and obtained estimates in terms of weighted L1 and Lp, p > 1
norms of V . We consider the case of Robin boundary conditions (including
Dirichlet and Dirichlet-Neumann) and obtain stronger estimates, in particu-
lar, estimates involving L logL norms of V including norms of V supported
by sets of fractional dimension. This is the work of Chapter 4.

1.2 Structure of the thesis

In Chapter 1, we give a brief background to the problem and discuss the
variational approach introduced by M. Sh. Birmann and M. Z. Solomyak [9]
that we use in obtaining our estimates. We review the theory and results
on Orclicz spaces that we use in the sequel. We also review the basic facts
in spectral theory and discuss in detail the spectrum of the Laplacian on a
strip with various boundary conditions.

In Chapter 2, we give a review of some of the known results and present
the necessary auxiliary results. We extend the estimates for the number of
negative eigenvalues of one-dimensional Schrödinger operators with poten-
tials locally integrable on R (see, e.g., [45]) to a general class of measures
including measures with atoms.
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In Chapter 3, we obtain estimates for the number of negative eigenvalues of
two-dimensional Schrödinger operators with potentials generated by Ahlfors
regular measures of dimension α ∈ (0, 2]. Our estimates involve weighted L1

norms and Orlicz norms of the potential.

In Chapter 4, we first consider the problem on a strip with Neumann bound-
ary conditions. Later, we consider the case of Robin boundary conditions and
derive Neumann-Robin and Dirichlet-Robin conditions as particular cases.
We present upper estimates for the number of eigenvalues (not all of them
necessarily negative) of the operator (1.1) lying below the bottom of the es-
sential spectrum. In both cases the estimates involve weighted L1 and L logL
norms of the potential.

1.3 Orlicz spaces

Let (Ω,Σ, µ) be a measure space and let Ψ : [0,+∞) → [0,+∞) be a non-
decreasing function. The Orlicz class KΨ(Ω) is the set of all (equivalence
classes modulo equality a.e. in Ω of) measurable functions f : Ω→ C (or R)
such that ∫

Ω

Ψ(|f(x)|)dµ(x) <∞ . (1.8)

If Ψ(t) = tp, 1 ≤ p < ∞, this is just the Lp(Ω) space. The difficulty here is
that the set of all functions satisfying (1.8) is not necessarily a linear space.
If Ψ is rapidly increasing, e.g exponentially increasing, (1.8) doesn’t imply
that the same integral for 2f is finite.

Definition 1.3.1. A continuous non-decreasing convex function Ψ : [0,+∞)→
[0,+∞) is called an N -function if

lim
t→0+

Ψ(t)

t
= 0 and lim

t→∞

Ψ(t)

t
=∞.

The function Φ : [0,+∞)→ [0,+∞) defined by

Φ(t) := sup
s≥0

(st−Ψ(s))

is called complementary to Ψ.

Examples of complementary functions include:

Ψ(t) =
tp

p
, 1 < p <∞, Φ(t) =

tq

q
,

1

p
+

1

q
= 1,

A(s) = e|s| − 1− |s|, B(s) = (1 + |s|) ln(1 + |s|)− |s|, s ∈ R.
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Definition 1.3.2. An N -function Ψ is said to satisfy a global ∆2-condition
if there exists a positive constant k such that for every t ≥ 0,

Ψ(2t) ≤ kΨ(t). (1.9)

Similarly Ψ is said to satisfy a ∆2-condition near infinity if there exists t0 > 0
such that (1.9) holds for all t ≥ t0.

Definition 1.3.3. We call the pair (Ψ,Ω) ∆-regular if either Ψ satisfies a
global ∆2-condition, or Ψ satisfies a ∆2-condition near infinity and µ(Ω) <
∞.

Lemma 1.3.4. ([1, Lemma 8.8]) KΨ(Ω) is a vector space if and only if (Ψ,Ω)
is ∆-regular.

Definition 1.3.5. The Orlicz space LΨ(Ω) is the linear span of the Orlicz
class KΨ(Ω), that is, the smallest vector space containing KΨ(Ω).

Consequently, KΨ(Ω) = LΨ(Ω) if and only if (Ψ,Ω) is ∆-regular.

Let Φ and Ψ be mutually complementary N -functions, and let LΦ(Ω), LΨ(Ω)
be the corresponding Orlicz spaces. (These spaces are denoted by L∗Φ(Ω),
L∗Ψ(Ω) in [27], where Ω is assumed to be a closed bounded subset of Rn

equipped with the standard Lebesgue measure.) We will use the following
norms on LΨ(Ω)

‖f‖Ψ = ‖f‖Ψ,Ω = sup

{∣∣∣∣∫
Ω

fgdµ

∣∣∣∣ :

∫
Ω

Φ(|g|)dµ ≤ 1

}
(1.10)

and

‖f‖(Ψ) = ‖f‖(Ψ,Ω) = inf

{
κ > 0 :

∫
Ω

Ψ

(
|f |
κ

)
dµ ≤ 1

}
. (1.11)

These two norms are equivalent

‖f‖(Ψ) ≤ ‖f‖Ψ ≤ 2‖f‖(Ψ) , ∀f ∈ LΨ(Ω), (1.12)

(see [1]).
Note that∫

Ω

Ψ

(
|f |
κ0

)
dµ ≤ C0, C0 ≥ 1 =⇒ ‖f‖(Ψ) ≤ C0κ0. (1.13)
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Indeed, since Ψ is convex and increasing on [0,+∞), and Ψ(0) = 0, we get
for any κ ≥ C0κ0,∫

Ω

Ψ

(
|f |
κ

)
dµ ≤

∫
Ω

Ψ

(
|f |
C0κ0

)
dµ ≤ 1

C0

∫
Ω

Ψ

(
|f |
κ0

)
dµ ≤ 1. (1.14)

It follows from (1.13) with κ0 = 1 that

‖f‖(Ψ) ≤ max

{
1,

∫
Ω

Ψ(|f |)dµ
}
. (1.15)

We will need the following equivalent norm on LΨ(Ω) with µ(Ω) <∞ which
was introduced in [44]:

‖f‖(av)
Ψ = ‖f‖(av)

Ψ,Ω = sup

{∣∣∣∣∫
Ω

fgdµ

∣∣∣∣ :

∫
Ω

Φ(|g|)dµ ≤ µ(Ω)

}
. (1.16)

Proposition 1.3.6. [1, Formula (16)] For any f ∈ LΨ(Ω) and g ∈ LΦ(Ω)∣∣∣∣∫
Ω

fg dµ

∣∣∣∣ ≤ ‖f‖Ψ,Ω‖g‖Φ,Ω. (1.17)

In particular, fg ∈ L1(Ω). This is the Hölder inequality for Orlicz spaces.

The following are referred to as strengthened Hölder inequalities:∣∣∣∣∫
Ω

fg dµ

∣∣∣∣ ≤ ‖f‖Ψ,Ω‖g‖(Φ,Ω) (1.18)

and ∣∣∣∣∫
Ω

fg dµ

∣∣∣∣ ≤ ‖f‖(Ψ,Ω)‖g‖Φ,Ω , (1.19)

for all f ∈ LΨ(Ω) and g ∈ LΦ(Ω) (see (9.26) and (9.27) respectively in [27]).

Lemma 1.3.7. [44, Lemma 1] Let ξ be an affine transformation of Rn, Ωξ =
ξ(Ω) and µ be the Lebesgue measure. Then for any N-function Ψ and for
any f ∈ LΨ(Ωξ)

µ(Ω)−1‖f ◦ ξ‖(av)
Ψ,Ω = µ(Ωξ)

−1‖f‖(av)
Ψ,Ωξ

. (1.20)

That is, (1.16) is invariant with respect to scaling.

Lemma 1.3.8. [44, Lemma 3] For any finite collection of pairwise disjoint
subsets Ωk of Ω ∑

k

‖f‖(av)
Ψ,Ωk
≤ ‖f‖(av)

Ψ,Ω. (1.21)
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Below we provide a proof of the above Lemma in a more general form. For
a > 0, let

‖f‖(a)
Ψ,Ω := sup

{∣∣∣∣∫
Ω

fg dµ

∣∣∣∣ :

∫
Ω

Φ(|g|) dµ ≤ a

}
. (1.22)

Lemma 1.3.9. Suppose Ω1,Ω2, ...,ΩN ⊆ Ω are such that Ωj∩Ωk = ∅, j 6= k.
Suppose there exists a sequence a1, a2, ..., aN ≥ 0 and κ ≥ 1 such that

N∑
k=1

ak ≤ κa . (1.23)

Then
N∑
k=1

‖f‖(ak)
Ψ,Ωk
≤ κ‖f‖(a)

Ψ,Ω . (1.24)

Proof. Let g = gk on Ωk and 0 on Ω\ ∪Nk=1 Ωk. Then

N∑
k=1

‖f‖(ak)
Ψ,Ωk

=
N∑
k=1

sup

{∣∣∣∣∫
Ωk

fgk dµ

∣∣∣∣ :

∫
Ωk

Φ(|gk|) dµ ≤ ak

}
.

Let G =
∑N

k=1 gk. Then∫
Ω

Φ(|G|)dµ =
N∑
k=1

∫
Ωk

Φ(|G|)dµ

=
N∑
k=1

∫
Ωk

Φ(|gk|)dµ

≤
N∑
k=1

ak ≤ κa .

There exists a G such that

N∑
k=1

‖f‖(ak)
Ψ,Ωk
≤ sup

{∣∣∣∣∫
Ω

fGdµ

∣∣∣∣ :

∫
∆

Φ(|G|) dµ ≤ κa

}
.

Let h = 1
κ
G. Since Φ is convex and Φ(0) = 0, then∫

Ω

Φ(|h|) dµ =

∫
Ω

Φ

(
1

κ
|G|
)
dµ

≤ 1

κ

∫
Ω

Φ(|G|) dµ

≤ 1

κ
.κa = a .
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Hence

N∑
k=1

‖f‖(ak)
Ψ,Ωk

≤ sup

{∣∣∣∣∫
Ω

fGdµ

∣∣∣∣ :

∫
Ω

Φ(|G|) dµ ≤ κa

}
≤ sup

{∣∣∣∣∫
Ω

f |κh| dµ
∣∣∣∣ :

∫
Ω

Φ(|h|) dµ ≤ a

}
= κ sup

{∣∣∣∣∫
Ω

fh dµ

∣∣∣∣ :

∫
Ω

Φ(|h|) dµ ≤ a

}
= κ‖f‖(a)

Ψ,Ω .

Let

‖f‖(av),τ
Ψ,Ω = sup

{∣∣∣∣∫
Ω

fϕdµ

∣∣∣∣ :

∫
Ω

Φ(|ϕ|)dµ ≤ τµ(Ω)

}
, τ > 0. (1.25)

Lemma 1.3.10. For any τ1, τ2 > 0

min

{
1,
τ2

τ1

}
‖f‖(av),τ1

Ψ,Ω ≤ ‖f‖(av),τ2
Ψ,Ω ≤ max

{
1,
τ2

τ1

}
‖f‖(av),τ1

Ψ,Ω . (1.26)

Proof. Let

X1 :=

{
ϕ :

∫
Ω

Φ(|ϕ|)dµ ≤ τ1µ(Ω)

}
, X2 :=

{
ϕ :

∫
Ω

Φ(|ϕ|)dµ ≤ τ2µ(Ω)

}
.

Suppose that τ1 ≤ τ2. Then, it is clear that ‖f‖(av),τ1
Ψ,Ω ≤ ‖f‖(av),τ2

Ψ,Ω . Now, since
Φ is convex and Φ(0) = 0, then

ϕ ∈ X2 ⇒
τ1

τ2

ϕ ∈ X1 , (cf. (1.13)).

Hence,

‖f‖(av),τ2
Ψ,Ω = sup

ϕ∈X2

∣∣∣∣∫
Ω

fϕdµ

∣∣∣∣ ≤ sup
φ∈X1

∣∣∣∣∫
Ω

f.

(
τ2

τ1

φ

)
dµ

∣∣∣∣ =
τ2

τ1

‖f‖(av),τ1
Ψ,Ω .

On the other hand, suppose that τ1 ≥ τ2. Then

‖f‖(av),τ2
Ψ,Ω ≤ ‖f‖(av),τ1

Ψ,Ω ≤ τ1

τ2

‖f‖(av),τ2
Ψ,Ω .

Hence,

min

{
1,
τ2

τ1

}
‖f‖(av),τ1

Ψ,Ω ≤ ‖f‖(av),τ2
Ψ,Ω
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and

‖f‖(av),τ2
Ψ,Ω ≤ max

{
1,
τ2

τ1

}
‖f‖(av),τ1

Ψ,Ω .

As a result of the above Lemma, we have the following Corollary.

Corollary 1.3.11. (see [43, Lemma 2.1])

min{1, µ(Ω)} ‖f‖Ψ,Ω ≤ ‖f‖(av)
Ψ,Ω ≤ max{1, µ(Ω)} ‖f‖Ψ,Ω.

Lemma 1.3.12. Let Ωk, k = 1, 2, ..., n be pairwise disjoint subsets of Ω ⊂ Rn

such that Ω =
⋃n
k=1 Ωk and set

M := max
k=1,2,...,n

µ(Ω)

µ(Ωk)
.

Then
n∑
k=1

‖f‖(av)
Ψ,Ωk
≤ ‖f‖(av)

Ψ,Ω ≤M
n∑
k=1

‖f‖(av)
Ψ,Ωk

. (1.27)

Proof.
∑n

k=1 ‖f‖
(av)
Ψ,Ωk
≤ ‖f‖(av)

Ψ,Ω follows from Lemma 1.3.8.

‖f‖(av)
Ψ,Ω = sup

ϕ

{∣∣∣∣∫
Ω

fϕdµ

∣∣∣∣ :

∫
Ω

Φ(|ϕ|) dµ ≤ µ(Ω)

}
= sup

ϕ

{∣∣∣∣∣
∫

Ωk

fϕ
n∑
k=1

χΩkdµ

∣∣∣∣∣ :

∫
Ω

Φ(|ϕ|) dµ ≤ µ(Ω)

}

≤
n∑
k=1

sup
ϕ

{∣∣∣∣∫
Ωk

fϕdµ

∣∣∣∣ :

∫
Ωk

Φ(|ϕ|) dµ ≤Mµ(Ωk)

}
≤

n∑
k=1

‖f‖(av),M
Ψ,Ωk

≤ M
n∑
k=1

‖f‖(av)
Ψ,Ωk

(by Lemma 1.3.10).

Lemma 1.3.13.
‖1‖(av)

Ψ,Ω = Φ−1(1)µ(Ω) . (1.28)
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Proof. Take any function g such that∫
Ω

Ψ(|g|) dµ ≤ µ(Ω).

Then the Jensen’s inequality [41, Theorem 3.3] implies

Φ

(
1

µ(Ω)

∫
Ω

g dµ

)
≤ 1

µ(Ω)

∫
Ω

Φ(|g|) dµ

≤ 1

µ(Ω)
.µ(Ω) = 1.

This implies ∫
Ω

g dµ ≤ Φ−1(1)µ(Ω).

This in turn implies
‖1‖(av)

Ψ,Ω ≤ Φ−1(1)µ(Ω) . (1.29)

On the other hand take g = Φ−1(1), then∫
Ω

Φ(|g|) dµ = µ(Ω)

and ∫
Ω

gdµ = Φ−1(1)µ(Ω).

This implies
‖1‖(av)

Ψ,Ω ≥ Φ−1(1)µ(Ω) . (1.30)

We will use the following pair of pairwise complementary N -functions

A(s) = e|s| − 1− |s|, B(s) = (1 + |s|) ln(1 + |s|)− |s|, s ∈ R. (1.31)

Remark 1.3.14. For p > 1, there exists a constant C = C(p) such that

‖f‖B,Ω ≤ C(p)‖f‖LP (Ω) . (1.32)

The optimal constant C(p) in (1.32) has the following asymptotics

C(p) =
1

e(p− 1)
− 1

e
ln

1

p− 1
+O(1) as p −→ 1, p > 1

(see [43, Remark 6.3]).
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1.4 Review of basic facts in spectral theory

In this section, we summarize basic definitions and various well known results
from spectral theory that will be used in the sequel.

Let H be a complex Hilbert space with an inner product 〈·, ·〉 and the norm
‖·‖ =

√
〈·, ·〉 . Let A : D(A)(domain of A) −→ H be a densely defined linear

operator. The operator Ã is called an extension of A (or A is a restriction of

Ã) if

D(A) ⊂ D(Ã) and for all f ∈ D(A), Ãf = Af.

The operator A is said to be symmetric if

〈Af, g〉 = 〈f, Ag〉 ∀f, g ∈ D(A).

The operator A∗ called the adjoint of A is defined as follows: D(A∗) is the
set g ∈ H such that for some h ∈ H

〈Af, g〉 = 〈f, h〉, ∀f ∈ D(A).

If A is densely defined then such h is unique and we define

h := A∗g.

We say that A is self-adjoint if A is symmetric and D(A) = D(A∗).

The spectrum of a self-adjoint operator A on H denoted by σ(A) is defined as
the set of all λ ∈ R such that A−λI, where I is the identity, is not invertible.
A− λI is invertible if and only if ker(A− λI) = {0} and Ran(A− λI) = H.
The set σp(A) ⊆ σ(A) of eigenvalues of A is called the point spectrum of A.
That is,

σp(A) := {λ ∈ R : ∃f ∈ D(A), ‖f‖ = 1, Af = λf}.

If λ is an eigenvalue of A, then the dimension of the kernel of A−λI is called
the multiplicity of λ. The discrete spectrum of A denoted by σdisc is the set
consisting of isolated eigenvalues of A of finite multiplicity. The set

σess := σ(A) \ σdisc

is called the essential spectrum of A. It contains either accumulation points
of σ(A) or isolated eigenvalues of A of infinite multiplicity.

The following theorem is used to characterize the essential spectrum of self-
adjoint operators ([16, Lemma 4.1.2]).
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Theorem 1.4.1. [Weyl criterion] Let A be a self-adjoint operator on H.
A point λ ∈ R belongs to σess(A) if and only if there exists a sequence
{fn}n∈N ⊂ D(A) such that for all n ∈ N, ‖fn‖ = 1, fn converges weakly to 0
and

‖Afn − λfn‖ −→ 0 as n −→∞.
Moreover, {fn} can be chosen orthonormal.

Theorem 1.4.2. (see, e.g., [32, § 10.1, Theorem 1]) Let {fn}n∈N be a
bounded sequence in a Hilbert space H. If 〈fn, g〉H −→ 0 as n −→ ∞ for g
in a dense subspace of H, then fn −→ 0 weakly in H.

Definition 1.4.3. A self-adjoint operator A on H is said to be lower semi-
bounded if there exist a real number c such that

〈Af, f〉 ≥ c‖f‖2, ∀f ∈ D(A).

In this case we simply write A ≥ c. We have the following variational formula
for the bottom of the spectrum of A (see [16, Sec. 4.5]):

Theorem 1.4.4. [Rayleigh-Ritz] Let A be a lower semi-bounded self-adjoint
operator on H. Then

inf σ(A) = inf
u∈D(A)
f 6=0

〈Af, f〉
‖f‖2

.

As a consequence of Theorem 1.4.4, A ≥ c implies σ(A) ⊆ [c,∞). On the
other hand,

inf σ(A) ≤ 〈Af, f〉
‖f‖2

for any test function f ∈ D(A) \ {0}.

Theorem 1.4.4 is a special case of the mini-max principle which is used to
characterize the part of the spectrum of lower semi-bounded self-adjoint op-
erators, which is located below the bottom of the essential spectrum (cf. [16,
Lemma 4.1.2]).

Theorem 1.4.5. [Mini-Max principle] Let A be a semi-bounded self-adjoint
operator on H and let

λ1 ≤ λ2 ≤ λ3 ≤ ...

be the eigenvalues of A below the bottom of the essential spectrum each
repeated according to their multiplicity. Then

λn = sup
f1,f2,...,fn−1∈D(A)

inf
f∈D(A)⊥{f1,f2,...,fn−1}

〈Af, f〉
‖f‖2

.
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Let X and Y be Banach spaces and A : X −→ Y a linear operator.

Definition 1.4.6. The graph of A is

G(A) := {(x,Ax) : x ∈ D(A)} ,

which is a subset of X × Y .

The product space X × Y is a Banach space with ‖(x, y)‖ = ‖x‖X + ‖y‖Y .

Definition 1.4.7. A : X −→ Y is called a closed operator if the G(A) is
closed. Equivalently, A is closed if for every sequence xn ∈ D(A) converging
to x ∈ X and Axn = yn −→ y in Y , we have x ∈ D(A) and y = Ax.

If the closure of the graph of A is the graph of some operator A, then A is
called the closure of A. A densely defined linear operator which has a closed
linear extension is said to be closable.

Definition 1.4.8. A core (or essential domain) of A is a subset C of D(A)
such that the closure of the restriction of A to C is A.

Definition 1.4.9. Let a linear subspace D(q) ⊂ H be fixed. A mapping
q : D(q)×D(q) −→ C which satisfies

q[αu+ βv, w] = αq[u,w] + βq[v, w]

and
q[u, αv + βw] = αq[u, v] + βq[u,w]

for all u, v, w ∈ D(q) is called a sesquilinear form. If D(q) is dense in H, then
q is densely defined.

The form q is said to be symmetric if

q[u, v] = q[v, u]

and lower semi-bounded if
q[u] ≥ c‖u‖2

where q[u] := q[u, u].

Definition 1.4.10. Let q be a symmetric sesquilinear form. We say that
un −→q u if un ∈ D(q), un −→ u and q[un − um] −→ 0 as n,m −→ ∞. If
un −→q u implies u ∈ D(q) and q[un−u] −→ 0, then we say that q is closed.
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We say that a sesquilinear form q2 is an extension of a sesquilinear form q1

if it has a larger domain but coincides with q1 on D(q1). A sesquilinear form
q is said to be closable if it has a closed extension, and the smallest closed
extension is called its closure q. A linear subspace E of the domain of a
closed form q is called a core for q if q is the closure of its restriction to E.

Theorem 1.4.11. (Second representation theorem,[51, Theorem 5.37]) Let
q be a densely defined closed, symmetric and lower semi-bounded form in a
Hilbert space H. Then there exists a unique self-adjoint operator A on H
such that D(A) ⊂ D(q),

q[u, v] = 〈Au, v〉
for every u ∈ D(A) and v ∈ D(q). If u ∈ D(q) and w ∈ H such that

q[u, v] = 〈w, v〉

holds for every v in the core of q, then u ∈ D(A) and Au = w.

Definition 1.4.12. We say that a form q′ defined on a dense linear set
D(q′) is closable if for any sequence un ∈ D(q′), ‖un‖ −→ 0, the property
q′[un − um] −→ 0 as n,m −→∞ implies q′[un] −→ 0.

By continuity q′ can be extended to a closed form.

1.5 The spectrum of the Laplacian on a strip

It is well known that the operator −∆ densely defined on the space L2(R2)
is a self-adjoint and its spectrum is equal to [0,∞), which is absolutely con-
tinuous. However, in the case of a strip the bottom of its essential spectrum
depends on the boundary conditions. Let a > 0 and S = R × I, where
I = (0, a), with Neumann (N), Dirichlet (D), Dirichlet-Neumann (DN) or
Robin (R) boundary conditions. Consider the following spectral problem.{

−∆u = λu in S

Blu = 0 on ∂S,
(1.33)

where Bl is one of the boundary operators. The operators on the transverse
section I, −∆I

l , are the usual Laplacians on L2(I) with Dirichlet boundary
conditions if l = D, the Neumann conditions if l = N , the Dirichlet at 0
and the Neumann one at a if l = DN or the Robin conditions if l = R (see
(1.35)).

Dom(−∆) = {u ∈ W 2
2 (S) : Blu = 0}.
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Let l ∈ {D,N,DN}. Assume that (1.33) has a non-trivial solution of the
form

u(x, y) = X(x)Y (y), X 6= 0, Y 6= 0.

Then one has

−X
′′(x)

X(x)
=
Y ′′(y)

Y (y)
+ λ = C in S

for some suitable separation constant C. This sort of separation of vari-
ables gives rise to two independent one-dimensional spectral problems, that
is the longitudinal and the transverse ones. The spectrum of the longitudinal
Laplacian, (−∆R) on L2(R) is the positive-real semi-axis, i.e.,

σ(−∆R) = σess(−∆R) = [0,∞).

The eigenvalues of the transverse Laplacian (−∆I
l ) on L2(I) are given by

λDn :=
(π
a

)2

n2, λNn :=
(π
a

)2

(n− 1)2, λDNn :=
( π

2a

)2

(2n− 1)2 (1.34)

where n = 1, 2, .... The corresponding normalized eigenfunctions {fn}∞n=1 can
be chosen as follows:

f ln(y) :=

√
2

a
sin
√
λlny for l ∈ {D,DN},

fNn (y) :=


√

1
a

if n = 1,√
2
a

cos
√
λNn y if n ≥ 2.

Since the eigenfunctions f ln form a complete orthonormal set in L2([0, a]) by
Fourier analysis, there are no other eigenvalues apart from those listed in
(1.34) (see, e.g., [16] for more details).

Theorem 1.5.1. [16, Theorm 4.1.5] The essential spectrum of a self-adjoint
operator H on a Hilbert space is empty iff there is a complete set of eigen-
functions {fn}∞n=1 of H such that the corresponding eigenvalues λn converge
in absolute values to ∞ as n→∞.

Thus, by the above theorem and (1.34), σess(−∆I
l ) = ∅.

Theorem 1.5.2. (cf. [28, Theorem 4.1]) σ(−∆S
l ) = σess(−∆S

l ) = [λl1,∞).

Proof. Let E lI [u] and E lS[u] denote the quadratic forms of the free Laplacian
on I and S respectively, subject to the boundary conditions l. Since σ(−∆I

l )
starts by λl1, then for all u ∈ Dom(−∆I

l ), we have

E lI [u] =

∫ a

0

|uy|2dy ≥ λl1 ‖ u ‖2
L2(I) .
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Now

E lS[u] =

∫
S

| ux |2 dxdy +

∫
S

| uy |2 dxdy

≥
∫
S

| uy |2 dxdy

=

∫
R
dx

(∫ a

0

| uy |2 dy
)

≥ λl1 ‖ u ‖2
L2(S)

This implies σ(−∆S
l ) ⊆ [λl1,∞).

On the other hand, pick ϕ ∈ C∞0 (R) with suppϕ = [−1, 1] such that

‖ϕ‖L2(R) = 1. Let ϕn(x) := n−
1
2ϕ(x

n
) so that ‖ϕn‖L2(R) = 1.

Take ∀λ ≥ λl1 and consider a sequence {un}∞n=1 ⊂ Dom(−∆S
l ) given by

un(x, y) := ϕn(x)ei
√
λ−λl1xf l1(y).

Then
‖un‖L2(S) = 1.

Since −(f l1)′′(y) = λl1f
l
1(y) and

∆un(x, y) = ϕ′′n(x)ei
√
λ−λl1xf l1(y)

+ 2i
√
λ− λl1ϕ′n(x)ei

√
λ−λl1xf l1(y)− λϕn(x)ei

√
λ−λl1xf l1(y)

then,

−∆un(x, y)− λun(x, y) = −ϕ′′n(x, y)ei
√
λ−λl1xf l1(y)

− 2i
√
λ− λl1ϕ′n(x)ei

√
λ−λl1xf l1(y)

implying that

‖ (−∆S
l − λ)un ‖ ≤ ‖ ϕ′′n ‖ ‖f l1‖+ 2

√
λ− λl1 ‖ ϕ′n ‖ ‖f l1‖

=
1

n2
‖ ϕ′′ ‖ +2

√
λ− λl1

1

n
‖ ϕ′ ‖→ 0 as n→∞.

Now, it remains to show that un −→ 0, n −→ ∞ weakly in L2(S). For any
N ∈ N, let

wN(x, y) :=


w(x, y), if |w(x)| ≤ N,

0, if |w(x)| > N
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with w ∈ W 1
2 (S). Then wN ∈ L1(S) ∩ L2(S) and ‖w − wN‖L2(S) −→ 0 as

N −→∞. Also

|〈un, wN〉L2(S)| ≤ ‖un‖L∞(S)‖wN‖L1(S) ≤
const√
n
‖wN‖L1(S) −→ 0 as n −→∞.

Since ‖un‖L(S) = 1, un converges weakly to 0 in L2(S) by Theorem 1.4.2.

Thus Theorem implies 1.4.1, λ ∈ σess(−∆S
l ). Hence

[λl1,∞) ⊆ σess(−∆S
l ) = σ(−∆S

l ).

Theorem 1.5.2 and its proof remain true for the case of Robin boundary con-
ditions but the quadratic form of the Laplacian involves boundary terms (see
(4.22)).

Next, we discuss in detail the spectrum of the Laplacian on a straight strip
subject to Robin boundary conditions. We shall see that the negative part
of its spectrum is not necessarily empty as opposed to the cases of Neumann,
Dirichlet and Dirichlet-Neumann boundary conditions .

Let S0 := [0, 1]× [0, a]. Consider the following eigenvalue problem
−∆u = λu in S0

ux(0, y) = ux(1, y) = 0

uy(x, 0) + αu(x, 0) = 0 = uy(x, a) + βu(x, a)

(1.35)

for α, β, λ ∈ R. Assume that a solution of (1.35) has the form

u(x, y) = v(x)w(y).

Then (1.35) reduces to two one dimensional problems, namely:{
−v′′(x) = (λ− τ)v(x) , 0 < x < 1

v′(0) = v′(1) = 0
(1.36)

and {
−w′′(y) = τw(y) , 0 < y < a

w′(0) + αw(0) = w′(a) + βw(a) = 0,
(1.37)
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where τ ∈ R is a separation constant.
The solution of (1.36) is given by

v(x) = cosmπx , λ = τ + π2m2, m = 0, 1, 2, ... (1.38)

To solve (1.37), we consider the following cases:

(i) For τ = 0 the solution of the ordinary differential equation in (1.37)
is of the form w(y) = Ay + B for some constants A and B. The first
boundary condition implies that

w(y) = −αy + 1 (take B = 1)

τ = 0 is in the spectrum iff the following condition holds true:

(1 + βa)α = β. (1.39)

Hence when τ = 0, solutions of (1.35) are given by

u(x, y) = cosmπx(1− αy) , λ = π2m2, m = 0, 1, 2, ... (1.40)

(ii) τ > 0 gives the following general solution

w(y) = A cos
√
τy +B sin

√
τy.

The boundary conditions in (1.37) yield

w(y) = cos
√
τy − α√

τ
sin
√
τy (take A = 1) (1.41)

and

tan
√
τa =

(β − α)
√
τ

τ + αβ
. (1.42)

Thus, we get a sequence τn = θ2
n, n = 1, 2, ... satisfying

(a) as α, β −→ 0, θn −→ nπ
a

,

(b) as α, β −→ ±∞, θn −→ nπ
a

,

(c) as α −→ 0, β −→ ±∞, θn −→ (2n+1)π
2a

,

(d) as β −→ 0, α −→ ±∞, θn −→ (2n+1)π
2a

.
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The related eigenfunctions are

wn(y) =

{
cos θny −

α

θn
sin θny

}
n=1,2,...

(1.43)

Hence solutions of (1.35) become

u(x, y) = cosmπx(cos θny −
α

θn
sin θny)

λ = θ2
n + π2m2, m = 0, 1, 2, ..., n = 1, 2, ... . (1.44)

If α = β, then one gets τ =
(
nπ
a

)2
, n = 0, 1, 2, .... Thus (1.44) becomes

u(x, y) = cosmπx
(

cos
nπ

a
y − αa

nπ
sin

nπ

a
y
)

λ =
(nπ
a

)2

+ π2m2, m = 0, 1, 2, ..., n = 0, 1, 2, ... .(1.45)

Also, a special case of (1.42): τ = −αβ. Then cos
√
τa = 0, i.e.

τ =
(

(2n+1)π
2a

)2

, n = 0, 1, 2, ... So, this case occurs iff αβ = −
(

(2n+1)π
2a

)2

for some n. Hence (1.44) becomes

u(x, y) = cosmπx

(
cos

(2n+ 1)π

2a
y − 2αa

(2n+ 1)π
sin

(2n+ 1)π

2a
y

)
λ =

(
(2n+ 1)π

2a

)2

+ π2m2, m = 0, 1, ..., n = 0, 1, ... . (1.46)

(iii) Let τ1 < τ2 be the smallest eigenvalues of (1.37). For some values of α
and β, τ1 or τ2 might be negative. Suppose that τ = −σ2(σ > 0) is a
negative eigenvalue. Then (1.41) and (1.42) respectively become

w(y) = cosh(σy)− α

σ
sinh(σy), (1.47)

tanh(σa) =
(β − α)σ

−σ2 + αβ
. (1.48)

To investigate when this happens, note that (1.39) divides the (α, β)-
plane into three connected components and the number of negative
eigenvalues in each of them is the same since eigenvalues are continuous
with respect to α and β. Consider the line β = −α, it transects all the
three regions (see Figure 1.1). By applying the shift y 7−→ y−b, b = a

2
,
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Figure 1.1: (1 + βa)α = β, β = −α

(1.37) becomes{
−w′′(y) = τw(y) − b < y < b

w′(−b) + αw(−b) = w′(b)− αw(b) = 0.
(1.49)

So, if w(y) is an eigenfunction, the function Q(y) = w(−y) is also
an eigenfunction with the same eigenvalue. Thus, we can consider
separately the eigenfunctions that are even functions and those that
are odd functions, described respectively by{

−w′′(y) = τw(y) , 0 < y < b

w′(0) = w′(b)− αw(b) = 0
(1.50)

and {
−w′′(y) = τw(y) , 0 < y < b

w(0) = w′(b)− αw(b) = 0.
(1.51)

Considering w(y) = cosh(σy) and w(y) = sinh(σy), the boundary con-
ditions in (1.50) and (1.51) respectively yield

α = σ tanh(σb) (1.52)
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and
α = σ coth(σb) . (1.53)

For σ > 0, both functions σ tanh(σb) and σ coth(σb) are monotone in-
creasing with minima equal to 0 and 1

b
respectively at σ = 0. Thus

(1.52) has one solution if and only if α > 0, and (1.53) has one solution
if and only if αb > 1. Hence if αa > 0 there is one negative eigenvalue
with even eigenfunction and if αa > 2, another negative eigenvalue
comes from odd eigenfunction.

In general, we have the following situations. If

A) α + αβa− β < 0 and α < 1
a

(
β > − 1

a

)
, then τ1 > 0,

B) α + αβa− β = 0 and α < 1
a

(
β > − 1

a

)
, then τ1 = 0 and τ2 > 0,

C) α + αβa− β > 0, then τ1 < 0 and τ2 > 0,

D) α + αβa− β = 0 and α > 1
a

(
β < − 1

a

)
, then τ1 < 0 and τ2 = 0,

E) α + αβa− β < 0 and α > 1
a

(
β < − 1

a

)
, then τ1 < 0 and τ2 < 0.

Cases (C)− (E) produce the following solutions of (1.35)

u(x, y) = cosmπx

(
coshσny −

α

σn
sinhσny

)
λ = −σ2

n + π2m2, m = 0, 1, 2, ..., (1.54)

where n = 1 in cases (C) and (D) while n = 1, 2 in case (E).

Remark 1.5.3. When α = 0, we have the Neumann condition at 0 and the
Robin conditions at a. By (1.39), τ = 0 if and only if β = 0. If β > 0, then
τ1, τ2 > 0 by condition (A). If β < 0, then τ1 < 0 and τ2 > 0 by condition (C).

When β = 0, we have the Robin condition at 0 and the Neumann condi-
tions at a. By (1.39), τ = 0 if and only if α = 0. If α > 0, then τ1 < 0 and
τ2 > 0 by condition (C). If α < 0, then τ1 > 0 and τ2 > 0 by condition (A).

Let α −→ ±∞. Then we have the Dirichlet conditions at 0 and the Robin
conditions at a. Again (1.39) implies that τ = 0 if and only if 1 + βa = 0.
(1.47) and (1.48) respectively become

w(y) = sinh(σy) (1.55)

and
tanh(σa) = −σ

β
. (1.56)
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(1.56) implies
β = −σ coth(σa) , (1.57)

(cf. (1.53)). Hence τ1 > 0 if 1 + βa > 0 and τ1 < 0, τ2 > 0 if 1 + βa < 0.

Let β −→ ±∞. Then we have Robin conditions at 0 and Dirichlet con-
ditions at a. By (1.39), τ = 0 if and only if αa− 1 = 0. (1.48) becomes

α = σ coth(σa) , (1.58)

(cf. (1.53)). Thus τ1 < 0, τ2 > 0 if αa− 1 > 0 and τ1 > 0 if αa− 1 < 0.

1.6 Index of quadratic forms

Let H be a Hilbert space and let q be a Hermitian form with a domain
Dom (q) ⊆ H. Set

N−(q) := sup {dimL | q[u] < 0, ∀u ∈ L \ {0}} , (1.59)

where L denotes a linear subspace of Dom (q). The number N−(q) is called
the Morse index of q in Dom (q). If q is the quadratic form of a self-adjoint
operator A with no essential spectrum in (−∞, 0), then by the variational
principle, N−(q) is the number of negative eigenvalues of A repeated accord-
ing to their multiplicity (see, e.g., [6, S1.3] or [8, Theorem 10.2.3]).

Let Ω ⊂ R2 be an arbitrary open set, µ a positive σ-finite Radon measure
on R2. Further, let V be a non-negative µ-measurable real valued function
such that V ∈ L1

loc(Ω, µ). Define the following quadratic form

EV µ,Ω[w] :=

∫
Ω

|∇w|2 dx−
∫

Ω

V |w|2 dµ(x),

with domain
H := W 1

2 (Ω) ∩ L2(Ω, V dµ).

Note that µ does not have to be the two dimensional Lebesgue measure, and
it may well happen that µ(∂Ω) > 0. In case µ is absolutely continuous with
respect to the Lebesgue measure, we shall simply write EV,Ω for the above
form.

For any V ≥ 0 and any σ-finite Radon measure µ on R2, N−(EV µ,Ω) ≥ 1. In-
deed, if V ∈ L1(Ω, µ), then 1 ∈ Dom(EV µ,Ω) and EV µ,Ω[1] < 0, which implies
N−(EV µ,Ω) ≥ 1. If V /∈ L1(Ω, µ), then consider wk(x) = 1

k
(k − |x|)+ for any
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positive integer k. Then this function belongs to H since it has a compact
support, 0 ≤ wk ≤ 1, and

∫
Ω
|∇wk|2 dx ≤ π. Since wk → 1 pointwise as

k →∞, then by Fatou Lemma [41, Lemma 1.28],∫
Ω

V w2
k dµ(x)→

∫
Ω

V dµ(x) =∞.

Hence, for k large enough, EV µ,Ω[wk] < 0 and we have that N−(EV µ,Ω) ≥ 1.
Under certain conditions, EV µ,Ω generates a self-adjoint operator

HV µ := −∆− V µ, V ≥ 0

as follows. Suppose that∫
Ω

V (x)|w(x)|2dµ(x) ≤ a

∫
Ω

|∇w(x)|2dx+ b

∫
Ω

|w(x)|2dx (1.60)

for all w ∈ W 1
2 (Ω) ∩ C(Ω) and some positive constants a < 1 and b (see,

e.g., [2], [22] and [47] for examples of measures which satisfy (1.60)). The
Dirichlet integral ∫

Ω

|∇w(x)|2 dx

with the domain W 1
2 (Ω) is a non-negative and closed form on L2(Ω). Thus

it follows from (1.60) and the Kato-Lax-Lions-Milgram-Nelson theorem [39,
Theorem X.17] that the quadratic form EV µ,Ω is lower semi-bounded and
closable on L2(Ω). Thus the operator HV µ uniquely associated with EV µ,Ω
in the sense of the second representation theorem (see Theorem 1.4.11) is
self-adjoint.

Definition 1.6.1. Let Ω ⊂ Rn be an open set. We say that a (finite or
infinite) sequence {Ωk} of non-empty open subsets Ωk ⊂ Ω is a partition of
Ω if Ωk ∩ Ωl = ∅, k 6= l and ∪

k
Ωk = Ω.

The following result can be found, e.g., in [23, Ch.6, §2.1, Theorem 4] in the
case µ is absolutely continuous with respect to the Lebesgue measure.

Lemma 1.6.2. If {Ωk} is a partition of Ω, then

N−(EV µ,Ω) ≤
∑
k

N−(EV µ,Ωk), ∀V ≥ 0. (1.61)

Proof. Let
Σ := ⊕{Dom(EV µ,Ωk), k = 1, 2, ...}.
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Here ⊕ denotes a direct sum. We consider
∑

k EV µ,Ωk as a form defined on
Σ. Let J : Dom(EV µ,Ω) −→ Σ be the embedding defined by

w 7−→ (w|Ω1 , w|Ω2 , ...).

Let Γ := J (Dom(EV µ,Ω)). Then ∀w ∈ Dom(EV µ,Ω), we have

EV µ,Ω[w] =

∫
Ω

|∇w(x)|2dx−
∫

Ω

V (x)|w(x)|2dµ(x)

≥
∑
k

(∫
Ωk

|∇w(x)|2dx−
∫

Ωk

V (x)|w(x)|2dµ(x)

)

=
∑
k

EV µ,Ωk [w|Ωk ] =

(∑
k

EV µ,Ωk

)
[Jw].

Hence

N−(EV µ,Ω) ≤ N−

((∑
k

EV µ,Ωk

)∣∣
Γ

)
≤ N−

(∑
k

EV µ,Ωk

)
=
∑
k

N−(EV µ,Ωk).

1.7 The variational approach to the problem

Let Ω ⊆ R2 be an unbounded domain. Split Ω into bounded domains Ωn

such that Ω = ∪
n∈Z

Ωn. Then by (1.61)

N− (EV µ,Ω) ≤
∑
n∈Z

N− (EV µ,Ωn) . (1.62)

If we have Neumann boundary conditions for Ωn and w is a constant func-
tion, say w = 1, EV µ,Ωn [1] < 0 implying that N− (EV µ,Ωn) ≥ 1 and thus the
right-hand side of (1.62) diverges. Therefore, we need to get rid of constant
functions. We do so by working on a space of functions whose mean value
over Ωk is equal to zero, i.e., functions that are orthogonal to 1 over Ωk. This
makes the use of the Poincaré inequality (see Appendix 5.2) possible. For
other boundary conditions we use different orthogonality conditions to get a
variant of the Poincaré inequality (see §4.3).

Now, let Ω = R2. Then the problem is split into two problems as follows:
Let (r, θ) denote the polar coordinates in R2, r ∈ R+, θ ∈ [−π, π] and

wR(r) :=
1

2π

∫ π

−π
w(r, θ)dθ, wN (r, θ) := w(r, θ)− wR(r), w ∈ C(R2 \ {0}).

(1.63)
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Then ∫ π

−π
wN (r, θ) dθ = 0, ∀r > 0, (1.64)

and it is easy to see that∫
R2

wRvN dy = 0, ∀w, v ∈ C
(
R2 \ {0}

)
∩ L2

(
R2
)
.

Hence w 7→ Pw := wR extends to an orthogonal projection P : L2 (R2) →
L2 (R2).
Using the representation of the gradient in polar coordinates one gets∫

R2

∇wR∇vN dy =

∫
R2

(
∂wR
∂r

∂vN
∂r

+
1

r2

∂wR
∂θ

∂vN
∂θ

)
dy

=

∫
R2

∂wR
∂r

∂vN
∂r

dy =

∫
R2

(
∂w

∂r

)
R

(
∂v

∂r

)
N
dy = 0, ∀w, v ∈ C∞0

(
R2
)
.

Hence P : W 1
2 (R2)→ W 1

2 (R2) is also an orthogonal projection.
Since ∫

R2

|∇w|2 dx =

∫
R2

|∇wR|2 dx+

∫
R2

|∇wN |2 dx,∫
R2

V |w|2 dµ(x) ≤ 2

∫
R2

V |wR|2 dµ(x) + 2

∫
R2

V |wN |2 dµ(x),

we have
N−(EV µ,R2) ≤ N−(ER,2V µ) +N−(EN ,2V µ) (1.65)

where ER,2V µ and EN ,2V µ are the restrictions of the form E2V µ,R2 to PW 1
2 (R2)

and (I−P )W 1
2 (R2) respectively. Therefore to estimate N− (EV µ,R2), it is suffi-

cient to estimateN− (ER,2V µ) andN− (EN ,2V µ). The estimates forN− (EN ,2V µ)
are different in nature from those for N− (ER,2V µ) and require different tech-
niques.

On the space PW 1
2 (R2), a simple exponential change of variables reduces

the problem to a well studied one-dimensional Schrödinger operator which
provides an estimate for N− (ER,2V µ) in terms of weighted L1 norms of V
that is optimal (see, e.g., (3.12), (3.13) and Theorem 3.2.18).
On the space (I−P )W 1

2 (R2), one gets an estimate for N− (EN ,2V µ) in terms of
Lp , p > 1 or Orlicz norms of V (see (3.48)) instead of L1 norm since W 1

2 (R2)
is not embedded in L∞(R2). Let

EN ,2V µ[w] :=

∫
R2

|∇w(x)|2 dx− 2

∫
R2

V (x)|w(x)|2 dµ(x),

Dom (EN ,2V µ) =
{
w ∈ (I − P )W 1

2 (R2) ∩ L2
(
R2, V dµ)

)}
.
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Split R2 into the following annuli

Ωn :=
{
x ∈ R2 : 2n−1 < |x| < 2n

}
, n ∈ Z.

Then ∫
Ωn

w(x) dx = 0, ∀w ∈ (I − P )W 1
2 (Ωn) (cf. (1.64)).

The variational principle (see (1.61)) implies

N− (EN ,2V µ) ≤
∑
n∈Z

N− (EN ,2V µ,Ωn) , (1.66)

where

EN ,2V µ,Ωn [w] :=

∫
Ωn

|∇w(x)|2 dx− 2

∫
Ωn

V (x)|w(x)|2 dµ(x),

Dom (EN ,2V µ,Ωn) =
{
w ∈ (I − P )W 1

2 (Ωn) ∩ L2
(
Ωn, V dµ

)}
.

Depending on the structure of µ, any estimate for N− (EN ,2V µ,Ω0) that has
the right scaling leads to an estimate for N− (EN ,2V µ,Ωn) for all n. So it is
sufficient to find an estimate for N− (EN ,2V µ,Ω0).

Let Ω = S := R× (0, a), a > 0. Then depending on the boundary conditions
at 0 and a, the form EV µ,S will involve boundary terms (see (4.18)). Split S
into the following rectangles

Sn := (n, n+ 1)× (0, a), n ∈ Z.

Then it is easy to see that the variational principle (1.61) remains true, i.e.,

N− (EV µ,S) ≤
∑
n∈Z

N− (EV µ,Sn) . (1.67)

Here, EV µ,Sn is the form that is obtained from EV µ,S by restricting all the
integrals to the intersections of the corresponding sets with Sn (see (4.34)).
Decomposing W 1

2 (S) depends on the boundary conditions at 0 and a. Let

H1 :=
{
u ∈ W 1

2 (S) : u(x) = w(x1)u1(x2)
}
,

where u1 is the first eigenfunction of − d2

dx22
on [0, a]. Then one can define an

orthogonal projection P : W 1
2 (S) −→ H1 (see (4.27)). Again, an estimate

coming from H1 will contribute the weighted L1 norms of V to the estimate
for N− (EV µ,S) (see (4.31)). Let H2 := (I − P )W 1

2 (S). Then H2 consists of
functions in W 1

2 (S) that are orthogonal to u1 in the inner product of L2([0, a])
(see §4.3). Note that if S is subject to Neumann boundary conditions, then
the mean value over Sn of the functions in H2 is equal to zero since u1 = 1
(see §4.2).
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Chapter 2

Review of known results and
auxilliary results

2.1 Review of known results

In this section, we present some known results starting with the work of M.
Solomyak (1994) that has had considerable influence in this line of research.

Let

Ω0 = {x : |x| ≤ 1}, Ωn = {x : 2n−1 < |x| < 2n}, n ∈ N;

U0 = {x : |x| ≤ e}, Un = {x : e2n−1

< |x| < e2n}, n ∈ N.

Note that the radius of the unit disk Ω0 and the radii of the annuli Ωn form
a geometric series. Similarly the logarithms of the inner radii of the annuli
Un form a geometric series. For a given potential V , let

ζn(V ) =

∫
Un

V (x)| ln |x|| dx, (2.1)

ηn(V ) = ‖V ‖(av)
B,Ωn . (2.2)

Recall that a sequence {an} belongs to the “weak l1-space” (Lorentz space)
l1,w if the following quasinorm

‖{an}‖1,w = sup
s>0

(s card{n : |an| > s}) (2.3)

is finite. It is a quasinorm in the sense that it satisfies the weak version of
the triangle inequality:

‖{an}+ {bn}‖1,w ≤ 2 (‖{an}‖1,w + ‖{bn}‖1,w) .
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Indeed, if |an| ≤ s
2

and |bn| ≤ s
2
, then |an + bn| ≤ s. This implies

{n : |an + bn| > s} ⊆
{
n : |an| >

s

2

}
∪
{
n : |bn| >

s

2

}
.

So

card {n : |an + bn| > s} ≤ card
{
n : |an| >

s

2

}
+ card

{
n : |bn| >

s

2

}
.

Hence
‖{an}+ {bn}‖1,w ≤ 2 (‖{an}‖1,w + ‖{bn}‖1,w) .

The quasinorm (2.3) induces a topology on l1,w in which this space is non-
separable. The closure of the set of elements an with only finite number of
non-zero terms is a separable subspace in l1,w. It is well known that l1 ⊂ l1,w
and

‖{an}‖1,w ≤ ‖{an}‖1

(see, e.g., [8] for more details).

Theorem 2.1.1. [44, Theorem 3]
Let V ∈ LB,loc(R2). If ζn(V ) ∈ l1,w and ηn(V ) ∈ l1, then the following
semi-classical estimate holds

N− (EV,R2) ≤ 1 + C (‖{ζn(V )}‖1,w + ‖{ηn(V )}‖1) . (2.4)

where C > 0 is a constant.

Here LB,loc(R2) is the space of functions in LB(R2) locally integrable on R2.
The conditions of the above Theorem are only sufficient for the semi-classical
behaviour of N− (EαV,R2) unlike (1.2) on Rn with n > 2. The presence of the
norms ‖{ζn(V )}‖1,w and ‖{ηn(V )}‖1 which are different in nature on the
right hand side of (2.4) complicates its optimality in terms of the function
spaces of V .

For σ > 1 and V ≥ 0, let

η0(V, σ) :=

(∫
Ω0

V (x)σ
) 1

σ

,

ηn(V, σ) :=

(∫
Ωn

|x|2(σ−1)V (x)σ
) 1

σ

, n ∈ Z.

The following result is due to M.Sh.Birman and A. Laptev [7].
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Theorem 2.1.2. Suppose {ηn(|V |, σ)} ∈ l1. Then for α > 0

N− (EαV,R2) ∼ N−

(
E (1)

αV,R2

)
+N−

(
E (2)

αV,R2

)
, (2.5)

where N−

(
E (1)

αV,R2

)
and N−

(
E (2)

αV,R2

)
are contributions to the asymptotics of

N− (EαV,R2) coming from the radial and non-radial components of V respec-
tively. Potentials were constructed such that (1.4) holds but (1.3) fails.

Consider the following operator on L2(R2)

HbV = −∆ + b|x|−2 − V, x ∈ R2, b ∈ R.

Let

H =

{
u :

∫
R2

(
|∇u(x)|2 + |u(x)|2|x|−2

)
dx < ∞

}
.

The following result is due to A. Laptev [29].

Theorem 2.1.3. Let b > 0 and V (x) = V (|x|) ≥ 0, V ∈ L1
loc(R2). Then

N− (EbV,R2) ≤ C(b)

∫
R2

V (x) dx , (2.6)

where

EbV,R2 [u] =

∫
R2

(
|∇u(x)|2 + b|u(x)|2|x|−2

)
dx−

∫
R2

V (x)|u(x)|2 dx,

Dom (EbV,R2) = H ∩ L2
(
R2, V (x)dx

)
.

Note that (2.6) is a direct analogue of (1.2).

Using an approach similar to that of A. Laptev, K. Chadin, N. Khuri, A.
Martin, T-T. Wu [12] in 2003 proved that if V (x) = V (|x|), then

N− (EV,R2) ≤ 1 + C

∫
R2

V (x) (1 + | ln |x||) dx. (2.7)

Let

Un := {x ∈ R2 : e2n−1

< |x| < e2n}, n > 0,

U0 := {x ∈ R2 : e−1 < |x| < e}, (2.8)

Un := {x ∈ R2 : e−2|n| < |x| < e−2|n|−1}, n < 0,

Ωn := {x ∈ R2 : en < |x| < en+1}, n ∈ Z,
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and

ζn := {ζn(V )} =

∫
Un

V (x)| ln |x|| dx, n 6= 0, ζ0(V ) =

∫
U0

V (x) dx,

ηn := {ηn(V )} = ‖V ‖(av)
B,Ωn .

Then there exist constants C, c1, c2 > 0 such that

N− (EV,R2) ≤ 1 + C

 ∑
{ζn>c1, n∈Z}

√
ζn +

∑
{ηn>c2, n∈Z}

ηn

 . (2.9)

This result is due to E. Shargorodsky [43] which is an improvement of the
estimate by A. Grigor’yan and N. Nadirashivili [17, Theorem 1.1]. Esti-
mates with the type of the first sum in the right hand side of (2.9) (without
explicit constants) were first obtained by M. Birman and M. Solomyak for
Schrödinger-type operators of order 2` in Rn with 2` > n (see [9, §6]). This
estimate implies (2.4) (see [43, Remark 6.2]).

We denote the polar coordinates in R2 by (r, ϑ), r ∈ R+, ϑ ∈ S := (−π, π].
Let I ⊆ R+ be a nonempty open interval and let

ΩI := {x ∈ R2 : |x| ∈ I}.

We denote by L1 (I, LB(S)) the space of measurable functions f : ΩI → C
such that

‖f‖L1(I,LB(S)) :=

∫
I

‖f(r, ·)‖B,S rdr < +∞. (2.10)

Let

A0 :=

∫
U0

V (x) dx, An :=

∫
Un

V (x)| ln |x|| dx, n 6= 0 , (2.11)

(see (2.8)) and

In := (en, en+1), Dn := ‖V ‖L1(In,LB(S)), n ∈ Z. (2.12)

The following result is due to E. Shargorodsky [43]:

Theorem 2.1.4. [43, Theorm 7.1]
There exist constants C > 0 and c > 0 such that

N− (EV,R2) ≤ 1 + 4
∑

An>1/4

√
An + C

∑
Dn>c

Dn , ∀V ≥ 0. (2.13)

36



This is the sharpest semi-classical estimate known so far. If N−(αV,R2) =
O (α) as α −→ +∞, then it is necessary that An ∈ l1,w ([43, Theorem 9.2]).
However, N−(αV,R2) = O (α) as α −→ +∞ does not imply that the second
sum in the right-hand side of (2.13) is finite. Even the finiteness of the right-
hand side of (2.13) doesn’t necessarily imply N− (EαV,R2) = O (α) as α →
+∞ (see [43], section 9 for details). On the other hand, no estimate of the
type

N−(αV,R2) ≤ const +

∫
R2

V (x)W (x) dx+ const‖V ‖Ψ,R2

can hold with an Orlciz norm ‖.‖Ψ,R2 weaker than ‖.‖B,R2 provided the weight
function W is bounded in the neighbourhood of at least one point (see [43,
Theorem 9.4]). If V (x) = V (|x|), the last term in (2.13) can be dropped and
one gets the result of A. Laptev and M. Solomyak [31] for radial potentials
through the estimate of the first sum in the right hand side of (2.13) by the
norm in l1,w (the next remark below). The result of K. Chadan, N. Khuri
and A. Martin (see (2.7)) is a direct consequence of the result by A. Laptev
and M. Solomyak. This is due to the estimate of the l1,w-quasinorm through
the norm in l1.

Remark 2.1.5. For any c > 0∑
An>c

√
An ≤

2√
c
‖(An)n∈Z‖1,w

(see (49) in [43]). ∑
Dn>c

Dn ≤
∑
n∈Z

Dn =

∫
R+

‖V ‖B,S r dr.

Hence (2.13) implies the following estimate

N− (EV,R2) ≤ 1 + const

(
‖(An)n∈Z‖1,w +

∫
R+

‖V ‖B,S r dr
)
, (2.14)

which in turn implies the result of A. Laptev and M. Solomyak [31, Theorem
1.1] since ∫

R+

‖V ‖B,S r dr ≤ C(p)

∫
R+

‖V ‖Lp(S) r dr , p > 1.

Let V∗ : R+ −→ [0,+∞) be a non-increasing spherical rearrangement of V ,
i.e. a non-increasing right continuous function such that∣∣{x ∈ R2 : V∗(|x|) > s}

∣∣ =
∣∣{x ∈ R2 : V (x) > s}

∣∣ , ∀s > 0,
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where | · | denotes the two dimensional Lebesgue measure. The following
estimate was conjectured in 2002 by Khuri-Martin-Wu [26].

N− (EV,R2) ≤ 1 + C

(∫
R2

V (x) ln (2 + |x|) dx+

∫
|x|<1

V∗(|x|) ln
1

|x|
dx

)
.

(2.15)
Using (2.14), it is shown in [43] that (2.15) is a direct consequence of the re-
sult by M. Solomyak in Theorem 2.1.1 and that the latter is strictly sharper.
This means that actually the Khuri-Martin-Wu conjecture was proved before
it was stated.

Let
S := {(x1, x2) ∈ R2 : x1 ∈ R, 0 < x2 < a}

be a strip with Neumann boundary conditions. For a given potential V and
for any n ∈ Z, set

an(V ) =

∫
Sn

V (x) (1+ | x1 |) dx,

where Sn = In × I, I = (0, a),

In := [2n−1, 2n], n > 0, I0 := [−1, 1], In := [−2|n|,−2|n|−1], n < 0.

For p > 1, also set

bn(V ) =

(∫
S∩{n<x1<n+1}

V p dx

) 1
p

.

EV,S[u] :=

∫
S

|∇u(x)|2 dx−
∫
S

V (x)|u(x)|2 dx,

Dom (EV,S) = W 1
2 (S) ∩ L2 (S, V (x)dx) .

Theorem 2.1.6. [17, Theorm 7.9]. Let V ∈ L1
loc(S). For any p > 1 there

exists positive constants C and c such that

N− (EV,S) ≤ 1 + C
∑

{n∈Z, an(V )>c}

√
an(V ) + C

∑
{n∈Z, bn(V )>c}

bn(V ), (2.16)

where the constants C and c depend only on p.

This result is due to A. Grigor’yan and N. Nadirashvili and it is the best
known estimate for the two dimensional Schrödinger operator considered on
a strip subject to the Neumann boundary conditions.
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2.2 Auxiliary results

Let I1, I2 ⊆ R be nonempty open intervals. We denote by L1 (I1, LB(I2)) the
space of measurable functions f : I1 × I2 → C such that

‖f‖L1(I1,LB(I2)) :=

∫
I1

‖f(x, ·)‖(av)
B,I2 dx < +∞ . (2.17)

Lemma 2.2.1. ( [43, Lemma 7.3], see also [44, Lemma 1] ) Consider an
affine transformation

ξ : R2 → R2, ξ(z) := Az + z0, A =

(
R1 0
0 R2

)
, R1, R2 > 0, z0 ∈ R2.

Let I1 × I2 = ξ(J1 × J2). Then

1

|I1 × I2|
‖f‖L1(I1,LB(I2)) =

1

|J1 × J2|
‖f ◦ ξ‖L1(J1,LB(J2)),

∀f ∈ L1 (I1, LB(I2)) .

Lemma 2.2.2. ([43, Lemma 7.4], see also [44, Lemma 3] ) Let rectangles
I1,k × I2,k, k = 1, . . . , n be pairwise disjoint subsets of I1 × I2. Then

n∑
k=1

‖f‖L1(I1,k,LB(I2,k)) ≤ ‖f‖L1(I1,LB(I2)), ∀f ∈ L1 (I1, LB(I2)) . (2.18)

Let Q := (0, 1)2 and I := (0, 1). We will also use the following notation:

wA :=
1

|A|

∫
A

w(z) dz,

where A ⊆ R2 is a set of a finite two dimensional Lebesgue measure |A|.

Lemma 2.2.3. ( [43, Lemma 7.5], see also [44, Lemma 2]) There exists
a constant C1 > 0 such that for any nonempty open intervals I1, I2 ⊆ R
of lengths R1 and R2 respectively, any w ∈ W 1

2 (I1 × I2) ∩ C
(
I1 × I2

)
with

wI1×I2 = 0, and any V ∈ L1 (I1, LB(I2)), V ≥ 0 the following inequality
holds: ∫

I1×I2
V (z)|w(z)|2 dz

≤ C1 max

{
R1

R2

,
R2

R1

}
‖V ‖L1(I1,LB(I2))

∫
I1×I2

|∇w(z)|2 dz. (2.19)
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Lemma 2.2.4. ([43, Lemma 7.6], see also [44, Theorem 1])
For any V ∈ L1 (I, LB(I)), V ≥ 0 and any n ∈ N there exists a finite cover
of Q by rectangles Ak = I1,k × I2,k, k = 1, . . . , n0 such that n0 ≤ n and∫

Q

V (z)|w(z)|2 dz ≤ C2n
−1‖V ‖L1(I,LB(I))

∫
Q

|∇w(z)|2 dz (2.20)

for all w ∈ W 1
2 (Q) ∩ C

(
Q
)

with wAk = 0, k = 1, . . . , n0, where the constant
C2 does not depend on V .

Let

EV,Q[w] :=
∫
Q
|∇w(z)|2dz −

∫
Q
V (z)|w(z)|2dz,

Dom (EV,Q) = W 1
2 (Q) ∩ L2 (Q, V (z)dz) .

Lemma 2.2.5. ([43, Lemma 7.7], see also [44, Theorem 4])

N−(EV,Q) ≤ C2‖V ‖L1(I,LB(I)) + 1, ∀V ≥ 0,

where C2 is the constant from Lemma 2.2.4.

2.2.1 Estimates for one-dimensional Schrödinger oper-
ators

In this subsection we present the estimates for the number of negative eigen-
values of one dimensional Schrödinger operators that we use in the sequel.

Let I be a finite interval in R of length l. For simplicity, take I = (0, l).
Let 0 = t0 < t1 < ... < tn = l be a partition of the interval I into n subinter-
vals Ik = (tk−1, tk). Let P stand for any such partition and |P | denote the
number of subintervals, i.e, |P | = n. Let ν be a positive Radon measure on R
and for any real number a > 0, consider the following function of partitions:

Θa(P ) := max
k

(tk − tk−1)a ν(Ik). (2.21)

Lemma 2.2.6. Suppose ν({x}) = 0 for all x ∈ R. Then for any n ∈ N there
exists a partition P of the interval I such that |P | = n and

Θa(P ) ≤ lan−1−aν(I). (2.22)

Proof. The proof follows a similar argument as in the proof of [45, Lemma
7.1] for measures absolutely continuous with respect to the Lesbegue measure.
By scaling, it is enough to prove (2.22) for l = 1 and ν(I) = 1. For n = 1
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there is nothing to prove. Now suppose (2.22) is true for some n, we show
that this is true for n+ 1. Since x 7−→ ν([x, 1)) is continuous, there exists a
point x ∈ (0, 1) such that

(1− x)aν([x, 1)) = (n+ 1)−1−a. (2.23)

Then one has
ν([x, 1)) = (n+ 1)−1−a(1− x)−a.

By the induction assumption, there exists a partition P0 of the interval (0, x)
into n subintervals 0 = t0 < t1 < ... < tn = x such that

Θa(P0) ≤ xan−1−aν((0, x))

= xan−1−a (1− (n+ 1)−1−a(1− x)−a
)
.

Then P is 0 = t0 < t1 < ... < tn < tn+1 = 1. To prove (2.22), due to (2.23) it
is sufficient to show that Θa(P0) ≤ (n+ 1)−1−a. We achieve this by showing
that

n−1−a ≤ (n+ 1)−1−ax−a + n−1−a(n+ 1)−1−a(1− x)−a.

Let h(x) = (n + 1)−1−ax−a + n−1−a(n + 1)−1−a(1 − x)−a. Then h is convex
on (0, 1) and solving h′(x) = 0 we see that h attains its minimum on (0, 1)
at the point x = n(n+ 1)−1 and this this minimum value is n−1−a.

Lemma 2.2.7. Suppose ν({t}) = 0 for all t ∈ I. For any n ∈ N, there exists
a partition P of the interval I such that |P | = n and∫

I

|u(t)|2dν(t) ≤ l

n2
ν(I)

∫
I

|u′(t)|2 dt, (2.24)

for all u ∈ Ln and Ln is the subspace of W 1
2 (I) of co-dimension n formed by

the functions satisfying u(t1) = ... = u(tn) = 0.

Proof. For any t ∈ Ik, the Cauchy-Schwartz inequality implies

|u(t)|2 = |u(t)− u(tk)|2 =

∣∣∣∣∫ tk

t

u′(s) ds

∣∣∣∣2
≤ |t− tk|

∫ tk

t

|u′(s)|2 ds

≤ |tk − tk−1|
∫ tk

tk−1

|u′(s)|2 ds.
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Hence ∫
Ik

|u(t)|2 dν(t) ≤ sup
t∈Ik
|u(t)|2ν(Ik)

≤ |tk − tk−1|ν(Ik)

∫ tk

tk−1

|u′(s)|2 ds.

With a = 1, (2.21) and Lemma 2.2.6 imply∫
I

|u(t)|2 dν(t) =
n∑
k=1

∫
Ik

|u(t)|2 dν(t)

≤
n∑
k=1

|tk − tk−1|ν(Ik)

∫ tk

tk−1

|u′(s)|2 ds

≤ Θa(P )
n∑
k=1

∫
Ik

|u′(s)|2 ds

≤ l

n2
ν(I)

∫
I

|u′(s)|2 ds.

The above Lemma excludes measures with atoms. However, one can show
that the lemma still holds true even when ν has atoms by approximating
ν by measures that are absolutely continuous with respect to the Lebesgue
measure.

Lemma 2.2.8. For any c > 1 and any n ∈ N there exists a partition P of I
such that |P | = n and∫

I

|u(t)|2dν(t) ≤ c
l

n2
ν(I)

∫
I

|u′(t)|2 dt, (2.25)

for all u ∈ W 1
2 (I) such that u(t1) = u(t2) = ... = u(tn) = 0.

Proof. Let ϕ ∈ C∞0 (R) such that ϕ(t) = 0 if |t| ≥ 1 and
∫
R ϕ(t) dt = 1. For

ε > 0, let ϕε(t) = 1
ε
ϕ( t

ε
). Then ϕε(t) = 0 if |t| ≥ ε and

∫
R ϕε(t) dt = 1.

Extend ν to R by ν(J) = 0 for J = R \ I. Let νε := ν ∗ ϕε, i.e.,

dνε(t) =

(∫
R
ϕε(t− y) dν(y)

)
dt.

Then supp νε ⊆ Iε, where Iε := [−ε, l + ε]. By Lemma 2.2.7, for any n ∈ N
there exists a partition Pε = {tε0, ..., tεn} of Iε such that |Pε| = n and∫

Iε

|uε(t)|2dνε(t) ≤
l

n2
νε(Iε)

∫
Iε

|u′ε(t)|2 dt, (2.26)
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for all uε ∈ W 1
2 (Iε) such that u(tε1) = ... = u(tεn) = 0 .

Let

ξ(x) :=
l + 2ε

l
x− ε.

Then

ξ−1(y) =
l

l + 2ε
(y + ε)

and
ξ : I −→ Iε, ξ−1 : Iε −→ I.

Let
tk = ξ−1 (tεk) , k = 0, ..., n.

Take any u ∈ W 1
2 (I) such that u(t1) = ... = u(tn). Consider

uε(y) := u(ξ−1(y)).

Then uε ∈ W 1
2 (Iε) and uε(t

ε
1) = ... = uε(t

ε
n) = 0, so (2.26) holds.

Now,

νε(Iε) =

∫
Iε

∫
R
ϕε(t− y)dν(y) dt =

∫
R

∫
Iε

ϕε(t− y) dtdν(y)

=

∫
I

∫
Iε

ϕε(t− y) dtdν(y) =

∫
I

∫
R
ϕε(t− y) dtdν(y)

=

∫
I

dν(y) = ν(I), (2.27)

∫
Iε

|u′ε(t)|2 dt =

∫
Iε

∣∣∣∣ ddtu(ξ−1(t))

∣∣∣∣2 dt
=

l

l + 2ε

∫
I

|u′(x)|2 dx

≤
∫
I

|u′(x)|2 dx. (2.28)
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∣∣∣∣∫
I

|u(y)|2 dν(y)−
∫
Iε

|uε(t)|2 dνε(t)
∣∣∣∣

=

∣∣∣∣∫
R
|u(y)|2 dν(y)−

∫
R
|uε(t)|2 dνε(t)

∣∣∣∣
=

∣∣∣∣∫
R
|u(y)|2 dν(y)−

∫
R
|uε(t)|2

∫
R
ϕε(t− y)dν(y) dt

∣∣∣∣
=

∣∣∣∣∫
R
|u(y)|2 dν(y)−

∫
R

∫
R
|uε(τ + y)|2ϕε(τ)dτ dν(y)

∣∣∣∣
≤
∫
R

∫
R

∣∣|u(y)|2 − |uε(τ + y)|2
∣∣ϕε(τ)dτdν(y)

≤ max
y∈I
|τ |≤ε

∣∣|u(y)|2 − |uε(τ + y)|2
∣∣ ν(I)

|u(y)|2 − |uε(τ + y)|2 = |u(y)|2 −
∣∣∣∣u( l

l + 2ε
(y + τ + ε)

)∣∣∣∣2
≤ |u(y)| −

∣∣∣∣u( l

l + 2ε
(y + τ + ε)

)∣∣∣∣
×
(
|u(y)|+

∣∣∣∣u( l

l + 2ε
(y + τ + ε)

)∣∣∣∣)
≤ 2

√
|I|
∣∣∣∣y − l

l + 2ε
(y + τ + ε)

∣∣∣∣ 12 ‖u′‖2
L2

= 2
√
l

√
1

l + 2ε
|2εy − lτ − lε|

1
2︸ ︷︷ ︸

≤
√

4lε

‖u′‖2
L2

≤ 4
√
l

√
l

l + 2ε

√
ε‖u′‖2

L2

≤ 4
√
l
√
ε‖u′‖2

L2 .

Hence ∣∣∣∣∫
I

|u(y)|2 dν(y)−
∫
Iε

|uε(t)|2 dνε(t)
∣∣∣∣ ≤ 4

√
l
√
ε‖u′‖2

L2ν(I).
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This combined with (2.26),(2.27) and (2.28) imply∫
I

|u(y)|2 dν(y) ≤
∫
Iε

|uε(t)|2 dνε(t) + 4
√
l
√
ε‖u′‖2

L2ν(I)

≤ ln−2ν(I)

∫
I

|u′(x)|2 dx+ 4
√
l
√
εν(I)

∫
I

|u′(x)|2 dx

=
(
ln−2 + 4

√
l
√
ε
)
ν(I)

∫
I

|u′(x)|2 dx.

Now choose ε > 0 such that
(
ln−2 + 4

√
l
√
ε
)
ν(I) ≤ c ln−2ν(I), i.e.,

ε ≤
(
c− 1

4n2

)2

l.

Let 0 < a < b. It follows from the embedding W 1
2 ([a, b]) ↪→ C([a, b]) that

there exist constants α, β > 0 such that

|u(x)|2

|x|
≤ α

∫ b

a

|u′(t)|2 dt+ β

∫ b

a

|u(t)|2

|t|2
dt, ∀u ∈ W 1

2 ([a, b]) and ∀x ∈ [a, b].

Since there are two constants involved here, it is convenient to rewrite the
inequality in the following form

|u(x)|2

|x|
≤ C(κ)

(∫ b

a

|u′(t)|2 dt+ κ

∫ b

a

|u(t)|2

|t|2
dt

)
, (2.29)

∀u ∈ W 1
2 ([a, b]) and ∀x ∈ [a, b], and to look for the best value of C(κ) for a

given κ > 0. The best value of C(κ) > 0 is given by

C(κ) =
1

2κ

(
1 +
√

1 + 4κ
b
√

1+4κ + a
√

1+4κ

b
√

1+4κ − a
√

1+4κ

)
, (2.30)

(see [43, Appendix A]).

Remark 2.2.9. Suppose u ∈ W 1
2 ([0, 1]) and u(0) = 0. Then using (2.29),

(2.30) with b = 1 and a→ 0+ one gets

|u(x)|2

|x|
≤ 1

2κ

(
1 +
√

1 + 4κ
)(∫ 1

0

|u′(t)|2 dt+ κ

∫ 1

0

|u(t)|2

|t|2
dt

)
,

∀x ∈ (0, 1],
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and the right-hand side is finite due to Hardy’s inequality. Note that

1

2κ

(
1 +
√

1 + 4κ
)
< C(κ)

for any b > a > 0 (see (2.30)).

Let ν be a σ-finite positive Radon measure on R. Consider the following
operator on L2(R)

Hν := − d2

dx2
− ν .

Define Hν via its quadratic form

ER,ν [u] :=

∫
R
|u′(x)|2dx−

∫
R
|u(x)|2 dν(x),

Dom(ER,ν) := W 1
2 (R) ∩ L2(R, dν).

Let

X : = W 1
2 (R),

X0 := {u ∈ X : u(0) = 0} ,

X1 :=

{
u ∈ W 1

2,loc(R) : u(0) = 0,

∫
R
| u′(x) |2 dx <∞

}
.

Then, dim(X/X0) = 1 and X0 ⊂ X1. Let EX,ν ,EX0,ν and EX1,ν denote the
forms ∫

R
| u′(x) |2 dx−

∫
R
| u(x) |2 dν(x)

on the domains X∩L2(R, dν), X0∩L2(R, dν) and X∩L2(R, dν) respectively.
Then

N−(ER,ν) = N−(EX,ν) ≤ N−(EX0,ν) + 1 ≤ N−(EX1,ν) + 1. (2.31)

An estimate for the right hand of (2.31) is presented in [43] when ν is abso-
lutely continuous with respect to the Lebesgue measure. We follow a similar
argument. It follows from Hardy’s inequality (see, e.g., [21, Theorem 327])
that∫
R
|u′(x)|2 dx+ κ

∫
R

|u(x)|2

|x|2
dx ≤

∫
R
|u′(x)|2 dx+ 4κ

∫
R
|u′(x)|2 dx

= (4κ+ 1)

∫
R
|u′(x)|2 dx, ∀u ∈ X1, ∀κ ≥ 0.
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Hence
N−(EX1,ν) ≤ N−(Eκ,ν), (2.32)

where

Eκ,ν [u] :=

∫
R
|u′(x)|2 dx+ κ

∫
R

|u(x)|2

|x|2
dx− (4κ+ 1)

∫
R
|u(x)|2 dν(x),

Dom (Eκ,ν) = X1 ∩ L2 (R, dν) .

It follows from (2.31) and (2.32) that

N−(ER,ν) ≤ N−(Eκ,ν) + 1. (2.33)

Let us partition R into the intervals In as follows:

In := [2n−1, 2n], n > 0, I0 := [−1, 1], In := [−2|n|,−2|n|−1], n < 0. (2.34)

Then the variational principle (see (1.61)) implies

N−(Eκ,ν) ≤
∑
n∈Z

N−(Eκ,ν,n), (2.35)

where

Eκ,ν,n[u] :=

∫
In

|u′(x)|2 dx+ κ

∫
In

|u(x)|2

|x|2
dx− (4κ+ 1)

∫
In

|u(x)|2 dν(x),

Dom (Eκ,ν,n) = W 1
2 (In) ∩ L2 (In, dν) , n ∈ Z \ {0},

Dom (Eκ,ν,0) = {u ∈ W 1
2 (I0) : u(0) = 0} ∩ L2 (I0, dν) .

Let n > 0. For any c > 1 and N ∈ N, by Lemma 2.2.8 there exists a subspace
LN ∈ Dom (Eκ,ν,n) of co-dimension N such that∫

In

|u(x)|2 dν(x) ≤ c

(
|In|
N2

∫
In

dν(x)

)∫
In

|u′(x)|2 dx, ∀u ∈ LN .

If

c(4κ+ 1)
|In|
N2

∫
In

dν(x) ≤ 1,

then Eκ,ν,n[u] ≥ 0, ∀u ∈ LN , and N−(Eκ,ν,n) ≤ N . Let

An :=

∫
In

|x| dν(x), n 6= 0, A0 :=

∫
I0

dν(x). (2.36)

Since |In|
∫
In
dν(x) ≤ An, n 6= 0, it follows from the above that

c(4κ+ 1)An ≤ N2 =⇒ N−(Eκ,ν,n) ≤ N.
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Hence
N−(Eκ,ν,n) ≤

⌈√
c(4κ+ 1)An

⌉
, (2.37)

where d·e denotes the ceiling function, i.e. dae is the smallest integer not less
than a. Suppose suppν ∩ In 6= {2n−1}, i.e., ν|In 6= const.δ2n−1 . Then

|In|
∫
In

dν(x) < An .

Take c > 1 such that

c|In|
∫
In

dν(x) ≤ An .

Then applying Lemma 2.2.8 with this c implies

N−(Eκ,ν,n) ≤
⌈√

(4κ+ 1)An
⌉
. (2.38)

If ν|In = const.δ2n−1 , then ∫
In

|u(x)|2 dν(x) = 0

on the the subspace of co-dimension one consisting of functions u ∈ W 1
2 (In)

such that u(2n−1) = 0, and clearly (2.38) holds. The right-hand side of (2.38)
is at least 1, so one cannot feed it straight into (2.35). One needs to find
conditions under which N−(Eκ,ν,n) = 0. By (2.29), we have that∫
In

|u(x)|2 dν(x) ≤ C(κ)

∫
In

|x| dν(x)

(∫
In

|u′(x)|2 dx+ κ

∫
In

|u(x)|2

|x|2
dx

)
= AnC(κ)

(∫
In

|u′(x)|2 dx+ κ

∫
In

|u(x)|2

|x|2
dx

)
,

for all u ∈ W 1
2 (In).

Hence N−(Eκ,ν,n) = 0, i.e. Eκ,ν,n[u] ≥ 0, provided An ≤ Φ(κ), where

Φ(κ) :=
2κ

4κ+ 1

(
1 +
√

4κ+ 1
2
√

4κ+1 + 1

2
√

4κ+1 − 1

)−1

. (2.39)

The above estimates for N−(Eκ,ν,n) clearly hold for n < 0 as well, but the case
n = 0 requires some changes. Since u(0) = 0 for any u ∈ Dom (Eκ,ν,0), one can
use the same argument as the one leading to (2.37), but with two differences:
a) LN can be chosen to be of co-dimension N−1, and b) |I0|

∫
I0
dν(x) = 2A0.

This gives the following analogue of (2.37)

N−(Eκ,ν,0) ≤
⌈√

2c(4κ+ 1)A0

⌉
− 1 .
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for any c > 1. We can choose c > 1 such that

N−(Eκ,ν,0) ≤
√

2(4κ+ 1)A0 , (2.40)

(see Lemma 2.2.10 below). In particular, N−(Eκ,ν,0) = 0 ifA0 < 1/(2(4κ+1)).
By Remark 2.2.9, one can easily see that the implication An ≤ Φ(κ) =⇒
N−(Eκ,ν,n) = 0 remains true for n = 0. Now it follows from (2.33) and (2.35)
that

N−(ER,2ν) ≤ 1 +
∑

{n∈Z\{0}: An>Φ(κ)}

⌈√
(4κ+ 1)An

⌉
+
√

2(4κ+ 1)A0 , (2.41)

and one can drop the last term ifA0 ≤ Φ(κ). The presence of the parameter κ
in this estimate allows a degree of flexibility. In order to decrease the number
of terms in the sum in the right-hand side, one should choose κ in such a
way that Φ(κ) is close to its maximum. A Mathematica calculation shows
that the maximum is approximately 0.092 and is achieved at κ ≈ 1.559. For
values of κ close to 1.559, one has

An > Φ(κ) =⇒
√

(4κ+ 1)An >
√

(4κ+ 1)Φ(κ) ≈ 0.816.

Since dae ≤ 2a for a ≥ 1/2, (2.41) implies

N−(ER,ν) ≤ 1 + 2
√

(4κ+ 1)
∑

An>Φ(κ)

√
An

with κ ≈ 1.559. Hence

N−(ER,ν) ≤ 1 + 5.06
∑

{n∈Z, An>0.092}

√
An . (2.42)

Lemma 2.2.10. For every y ∈ R+, there exists c > 1 such that

dcye − 1 ≤ y .

Proof. Case 1: Suppose y ∈ R+\Z+. Then there exists l ∈ Z+ such that

l < y < l + 1 .

Take c > 1 such that
l < cy < l + 1 .

Then
dcye − 1 = l + 1− 1 = l < y .

Case 2: Suppose y ∈ Z+. Take c > 1 such that

cy < y + 1 .

Then
dcye − 1 = y + 1− 1 = y .
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Chapter 3

Two dimensional Schrödinger
Operators with potentials
generated by a Radon measure

3.1 Introduction

In this chapter, we obtain upper estimates for the number of negative eigen-
values of two dimensional Schrödinger operators with potentials of the form
V µ, where µ is a σ-finite positive Radon measure on R2 and V ≥ 0 is a real
valued function locally integrable on R2 with respect to µ as in § 1.6.

Consider the operator on L2(R2),

HV µ := −∆− V µ, V ≥ 0. (3.1)

We define HV µ via its quadratic form by

EV µ,R2 [u] :=

∫
R2

|∇u|2dx−
∫
R2

V |u|2dµ (3.2)

with domain W 1
2 (R2) ∩ L2(R2, V dµ). We shall denote by N− (EV µ,R2) the

number of negative eigenvalues (counted with multiplicities) of the operator
(3.1).

If one introduces the “supporting” term |x|−2 to the Laplacian in (3.1), we
have

TV µ := −∆ + |x|−2 − V µ, V ≥ 0. (3.3)
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Under certain restrictions on µ, it was shown by A. Laptev and Yu. Nestrusov
[30] that

N− (ET,V µ,R2) ≤ C

∫
R2

V (x) dµ(x), (3.4)

where N− (ET,V µ,R2) denotes the number of negative eigenvalues of TV µ and
C is a constant independent of V and µ. They also proved if µ is absolutely
continuous with respective to the Lebesgue measure, then

N− (ET,V µ,R2) ≤ C(p)‖V ‖L1(R+,Lp(S)) S = [0, 2π], p > 1, V ≥ 0. (3.5)

However, (3.5) fails if the supporting term is dropped.

In this Chapter, we restrict ourselves to the operator (3.1), where the mea-
sure µ is of the “power” type (see (3.7)).

Let Ψ and Φ be mutually complementary N-functions and let LΦ(Ω, µ) and
LΨ(Ω, µ) be the respective Orlicz spaces on a set Ω ⊆ R2 of finite measure

µ(Ω). We will use the notation ‖f‖Ψ,Ω,µ and ‖f‖(av)
Ψ,Ω,µ respectively for the

norms (1.10) and (1.16) on LΨ(Ω, µ).

Lemma 3.1.1. Let µ be a σ-finite Radon measure on R2 such that µ({x}) =
0, ∀x ∈ R2. Let

Σ := {θ ∈ [0, π) : ∃ lθ such that µ(lθ) > 0} , (3.6)

where lθ is a line in R2 in the direction of the vector (cos θ, sin θ). Then Σ is
at most countable.

Proof. Let

ΣN := {θ ∈ [0, π) : ∃ lθ such that µ(lθ ∩B(0, N)) > 0} ,

where B(0, N) is the ball of radius N ∈ N centred at 0. Then

Σ = ∪
N∈N

ΣN .

It is now enough to show that ΣN is at most countable for ∀N ∈ N. Suppose
that ΣN is uncountable. Then there exists a δ > 0 such that

ΣN,δ := {θ ∈ [0, π) : ∃ lθ such that µ(lθ ∩B(0, N)) > δ}

51



is infinite. Otherwise, ΣN = ∪
n∈N

ΣN, 1
n

would have been finite or countable.

Now take θ1, ..., θk, ... ∈ ΣN,δ. Then

µ (lθk ∩B(0, N)) > δ, ∀k ∈ N .

Since lθj ∩ lθk , j 6= k contains at most one point, then

µ

(
∪
j 6=k

(lθj ∩ lθk)
)

= 0.

Let
l̃θk := lθk\ ∪

j 6=k
(lθj ∩ lθk) .

Then l̃θj ∩ l̃θk = ∅, j 6= k and l̃θk ∩B(0, N) ⊂ B(0, N). So

µ

(
∪
k∈N

(l̃θk ∩B(0, N))

)
≤ µ (B(0, N)) <∞ .

But
µ
(
l̃θk ∩B(0, N)

)
= µ (lθk ∩B(0, N)) ≥ δ

which implies ∑
k∈N

µ
(
l̃θk ∩B(0, N)

)
≥
∑
k∈N

δ =∞ .

This contradiction means that ΣN is at most countable for each N ∈ N.
Hence Σ is at most countable.

Corollary 3.1.2. There exists θ0 ∈ [0, π) such that θ0 /∈ Σ and θ0 + π
2
/∈ Σ.

Proof. The set

Σ− π

2
:=
{
θ − π

2
: θ ∈ Σ

}
is at most countable. This implies that there exists a θ0 /∈ Σ∪ (Σ− π

2
). Thus

θ0 + π
2
/∈ Σ.

Let Q be an arbitrary unit square with its sides in the directions determined
by θ0 and θ0 + π

2
in Corollary 3.1.2. For a given x ∈ Q and t > 0, let Qx(t)

be a square centred at x with edges of length t parallel to those of Q.

Lemma 3.1.3. Suppose that Ψ satisfies the ∆2-condition (see 1.9). Then

for all f ∈ LΨ(Q, µ), the function f 7−→ ‖f‖(av)
Ψ,Qx(t),µ is continuous.
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Proof. For every interval I ⊆ Q parallel to the sides of Q, µ(I) = 0. Let
t > t0 > 0. Then

0 ≤ ‖f‖(av)
Ψ,Qx(t),µ − ‖f‖

(av)
Ψ,Qx(t0),µ

= sup

{∣∣∣∣∫
Qx(t)

fg dµ

∣∣∣∣ :

∫
Qx(t)

Φ(|g(x)|) dµ ≤ µ(Qx(t))

}
− sup

{∣∣∣∣∫
Qx(t0)

fh dµ

∣∣∣∣ :

∫
Qx(t0)

Φ(|h(x)|) dµ ≤ µ(Qx(t0))

}
.

Take ρ = µ(Qx(t0))
µ(Qx(t))

≤ 1 and h = ρg. Then∫
Qx(t0)

Φ(|ρg|) dµ ≤
∫
Qx(t)

Φ(|ρg|) dµ

= ρ

∫
Qx(t)

Φ(|g|) dµ

≤ ρµ(Qx(t))

≤ µ(Qx(t0)).

So,

0 ≤ ‖f‖(av)
Ψ,Qx(t),µ − ‖f‖

(av)
Ψ,Qx(t0),µ

= sup

{∣∣∣∣∫
Qx(t)

fg dµ

∣∣∣∣ :

∫
Qx(t)

Φ(|g(x)|) dµ ≤ µ(Qx(t))

}
− sup

{∣∣∣∣∫
Qx(t0)

fh dµ

∣∣∣∣ :

∫
Qx(t0)

Φ(|h(x)|) dµ ≤ µ(Qx(t0))

}
≤ sup

{∣∣∣∣∫ Qx(t)fg dµ

∣∣∣∣ :

∫
Qx(t)

Φ(|g(x)|) dµ ≤ µ(Qx(t))

}
− sup

{
ρ

∣∣∣∣∫
Qx(t0)

fg dµ

∣∣∣∣ :

∫
Qx(t)

Φ(|g(x)|) dµ ≤ µ(Qx(t))

}
≤ sup

{∣∣∣∣∫
Qx(t)

fg dµ

∣∣∣∣− ρ ∣∣∣∣∫
Qx(t0)

fg dµ

∣∣∣∣ :

∫
Qx(t)

Φ(|g(x)|) dµ ≤ µ(Qx(t))

}
≤ sup

{∣∣∣∣∫
Qx(t)\Qx(t0)

fg dµ

∣∣∣∣ :

∫
Qx(t)

Φ(|g(x)|) dµ ≤ µ(Qx(t))

}
+ (1− ρ)sup

{∣∣∣∣∫
Qx(t0)

fg dµ

∣∣∣∣ :

∫
Qx(t)

Φ(|g(x)|) dµ ≤ µ(Qx(t))

}
.

For each g,
∫
Qx(t)\Qx(t0)

fg dµ −→ 0 as t −→ t0 follows from the absolute

continuity of the Lebesgue integral.
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However, sup
g

{∫
Qx(t)\Qx(t0)

fg dµ :
∫
Qx(t)

Φ(|g(x)|) dµ ≤ µ(Qx(t))
}
−→ 0 as

t −→ t0 is not immediate. We can estimate this term using the Hölder
inequality (see (1.19))

sup
g

{∫
Qx(t)\Qx(t0)

fg dµ :

∫
Qx(t)

Φ(|g(x)|) dµ ≤ µ(Qx(t))

}
≤ ‖f‖(Ψ,Qx(t)\Qx(t0),µ). sup

{
‖g‖Φ,Qx(t)\Qx(t0),µ :

∫
Qx(t)

Φ(|g(x)|) dµ ≤ µ(Qx(t))

}
≤ ‖f‖(Ψ,Qx(t)\Qx(t0),µ).2 max{1, µ(Qx(t))}

(see (1.12) and (1.15)). It is clear that ‖f‖(Ψ,Qx(t)\Qx(t0),µ) is a non-increasing
function of t. Suppose

lim
t−→t0

‖f‖(Ψ,Qx(t)\Qx(t0),µ) = κ0 > 0.

Since Ψ satisfies the ∆2 condition, then∫
Qx(t)\Qx(t0)

Ψ

(
|f |
κ0

)
dµ ≥ 1 , ∀t > t0

(see (9.21) and (9.22) in [27]) which contradicts the absolute continuity of
the Lebesgue integral. Hence

lim
t−→t0

‖f‖(Ψ,Qx(t)\Qx(t0),µ) = 0.

Now, µ (Qx(t) \Qx(t0)) −→ µ(∂Qx(t0)) = 0 as t −→ t0. This implies

ρ =
µ(Qx(t0))

µ(Qx(t))
= 1− µ (Qx(t) \Qx(t0))

µ(Qx(t))
−→ 1 as t −→ t0.

Hence

(1− ρ)sup

{∣∣∣∣∫
Qx(t0)

fg dµ

∣∣∣∣ :

∫
Qx(t)

Φ(|g(x)|) dµ ≤ µ(Qx(t))

}
−→ 0

as t −→ t0. The case t0 > t > 0 is proved similarly and the proof is
complete.

Definition 3.1.4. (Ahlfors regularity) Let µ be a positive Radon measure
on R2. We say the measure µ is Ahlfors regular of dimension α > 0 if there
exist positive constants c0 and c1 such that

c0r
α ≤ µ(B(x, r)) ≤ c1r

α (3.7)

for all 0 < r ≤ diam(suppµ), where B(x, r) is a ball of radius r centred at
x ∈ suppµ and the constants c0 and c1 are independent of the balls.
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Assume that suppµ is unbounded, so (3.7) is satisfied for all r > 0. If the
measure µ is α-dimensional Ahlfors regular, then it is equivalent to the α-
dimensional Hausdorff measure (see, e.g., [15, Lemma 1.2] ). For more details
and examples of unbounded Ahlfors regular sets, see for example [15, Lemma
13.4], [24] and [48] . In the sequel, unless otherwise stated we shall assume
that 0 < α ≤ 2. Suppose that µ is the usual one-dimensional Lebesgue
measure on a horizontal or vertical line, then (3.7) holds with α = 1. This
implies µ(I) 6= 0 for every nonempty subinterval I of that line, hence the
need of Lemma 3.1.1 and Corollary 3.1.2 for the validity of Lemma 3.1.3 if
α = 1 .

3.2 Statement and proof of the main result

Let

Jn = [e2n−1

, e2n ], n > 0 J0 := [e−1, e], Jn = [e−2|n| , e−2|n|−1

], n < 0,

and

Gn :=

∫
Jn

| ln |x||V (x) dµ(x), n 6= 0, G0 :=

∫
J0

V (x)dµ(x). (3.8)

Assume without loss of generality that 0 ∈ suppµ. Further, let

Qn :=

{
x ∈ R2 :

(
2
c1

c0

)n−1
α

≤ |x| ≤
(

2
c1

c0

)n
α

}
, n ∈ Z

and
Dn := ‖V ‖(av)

B,Qn,µ .

Let

EV µ,R2 [w] :=

∫
R2

|∇(x)|2 dx−
∫
R2

V (x)|w(x)|2 dµ(x) ,

Dom(EV µ,R2) = W 1
2 (R2) ∩ L2(R2, V dµ).

Then we have the following theorem:

Theorem 3.2.1. Let µ be a positive Radon measure on R2 that is Ahlfors
regular and V ∈ LB(Qn, µ), V ≥ 0. Then there exist constants C > 0 and
c > 0 such that

N−(EV µ,R2) ≤ 1 + 4
∑

{n∈Z, Gn>0.25}

√
Gn + C

∑
{n∈Z, Dn>c}

Dn . (3.9)
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Remark 3.2.2. If α = 1, the above result gives the case when the potential
V is supported by a one-dimensional set in R2 (e.g., a curve that is Ahlfors
regular and µ is the arc length measure of the curve). In fact, Theorem 3.2.1
extends the result by E. Shargorodsky ([42, Theorem 3.1]) to general Ahlfors
regular curves. In his result, he considered the case where the potential is
compactly supported on a family of Lipschitz curves in R2, a condition that
is much stronger than Ahlfors regularity. If α = 2, then µ is absolutely
continuous with respect to the two dimensional Lebesgue measure, a case
that has been widely studied (see §2.1). If α ∈ (0, 1) ∪ (1, 2), then µ is
supported by sets of fractional dimension (e.g., α- Hausdorff dimensional
sets) in R2.

In the proof of Theorem 3.2.1, we will use the variational argument discussed
in §1.7. We will only need to find an estimate for the right-hand side of
(1.65). We shall start with the first term. Let I be an arbitrary interval in
R+. Define a measure on R+ by

ν(I) :=

∫
|x|∈I

V (x) dµ(x). (3.10)

Since wR ∈ L2(R2) (see (1.63)), one can approximate wR by simple measur-
able functions, i.e.,

wR =
N∑
k=1

ckχJk , Jk ∩ Jj = ∅, k 6= j,

where ck’s are constants and χJk is the characteristic function of the subin-
terval Jk ⊆ I. Then∫

R2

|wR(x)|2V (x) dµ(x) = lim
N−→∞

N∑
k=1

|ck|2
∫
R2

χJkV (x) dµ(x)

= lim
N−→∞

N∑
k=1

|ck|2
∫
|x|∈Jk

χJkV (x) dµ(x)

= lim
N−→∞

N∑
k=1

|ck|2ν(Jk)

=

∫
R+

|wR(r)|2dν(r).

Let r = et, w(x) = wR(r) = v(t). Then∫
R2

|∇w(x)|2dx = 2π

∫
R
|v′(t)|2dt
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and ∫
R2

V |w(x)|2dµ(x) =

∫
R+

|wR(r)|2dν(r) =

∫
R
|wR(et)|2dν(et)

=

∫
R
|v(t)|2 dν(et).

Let

Gn :=
1

2π

∫
In

|t| dν(et), n 6= 0, G0 :=
1

2π

∫
I0

dν(et) , (3.11)

(see (2.34)). Then similarly to (2.42) one has

N−(ER,2ν) ≤ 1 + 7.61
∑

{n∈Z,Gn>0.046}

√
Gn , (3.12)

where

ER,2ν [v] :=

∫
R
|v′(t)|2 dt− 2

∫
R
|v(t)|2 dν(et),

Dom(ER,2ν) = W 1
2 (R) ∩ L2(R, dν).

It follows from (3.8), (3.10) and (3.11) that Gn = 2πGn and thus (3.12)
implies

N−(ER,2V µ) ≤ 1 + 4
∑

{n∈Z, Gn>0.25}

√
Gn. (3.13)

Next, we find an estimate for the second term in the right-hand side of (1.65).

Let Ω be an arbitray subset of R2. To the Sobolev space W 1
2 (Ω), we associate

a set function called the capacity. Namely, for any compactum e ⊂ Ω, we
put

cap(e,W 1
2 (Ω)) := inf

{
‖w‖2

W 1
2 (Ω) : w ∈ C∞0 (Ω), w ≥ 1 on e

}
. (3.14)

Let
Nt(w) = {x : |w(x)| ≥ t} , w ∈ W 1

2 (Ω).

Then we have the following capacitary inequality∫ ∞
0

cap(Nt(w),W 1
2 (Ω))t dt ≤ C3‖w‖2

W 1
2 (Ω), (3.15)

where C3 > 0 is a constant independent of w (see [33], (11.2.9)).
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Theorem 3.2.3. [33, Theorem 11.3.] Let Ψ and Φ be mutually complemen-
tary N-functions and let µ be a positive Radon measure on R2. Further, let
Ω be a domain in R2, then there exists a constant C4 > 0 (possibly infinite)
such that

‖w2‖Ψ,Ω,µ ≤ C4‖w‖2
W 1

2 (Ω) (3.16)

for all w ∈ W 1
2 (Ω) ∩ C(Ω). The best constant C4 is equivalent to

B = sup

µ(E)Φ−1
(

1
µ(E)

)
cap(E,W 1

2 (Ω))
: E ⊆ Ω, cap(E,W 1

2 (Ω)) > 0

 <∞. (3.17)

That is, B ≤ C4 ≤ 2BC3, where C3 is the constant in (3.15).

Let ϕ be a nonnegative increasing function on [0,+∞) such that tϕ(t−1)
decreases and tends to zero as t −→∞. Further, suppose∫ +∞

u

tσ(t)dt ≤ cuσ(u), (3.18)

for all u > 0, where

σ(v) = vϕ

(
1

v

)
and c is a positive constant (see (11.7.2) in [33]).

Theorem 3.2.4. (cf. [33, Theorem 11.8]) Let ϕ be the inverse function of
t −→ tΦ−1(t−1) subject to condition (3.18). Then the best constant in (3.16)
is equivalent to

B1 = sup

{
| log r|µ(B(x, r))Φ−1

(
1

µ(B(x, r))

)
: x ∈ Ω, 0 < r <

1

2

}
.

(3.19)
where B(x, r) is a ball of radius r centred at x.

Proof. According to Theorem 3.2.3, it is enough to prove the equivalence
B ∼ B1. For 0 < r ≤ 1, cap(B(x, r),W 1

2 (Ω)) ∼ 1
| log r| (see (10.4.15) in [33]).

So it follows from (3.17) that

| log r|µ(B(x, r))Φ−1

(
1

µ(B(x, r))

)
≤ | log r|Bcap

(
B(x, r),W 1

2 (Ω)
)

≤ k0B

where k0 > 0 is a constant. Hence

k−1
0 B1 ≤ B.
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Also (3.19) implies

µ(B(x, r))Φ−1

(
1

µ(B(x, r))

)
≤ B1

1

| ln r|
≤ B1k1 cap(B(x, r),W 1

2 (Ω)),

where k1 > 0 is a constant. Since ϕ is the inverse function of t −→ tΦ−1(t−1),
then

µ(B(x, r)) ≤ ϕ
(
B1k1 cap(B(x, r),W 1

2 (Ω))
)
.

Thus for any Borel set E with the finite capacity cap(E,W 1
2 (Ω)), Corollary

11.7/2 in [33] implies

µ(E) ≤ k2ϕ
(
B1k1 cap(E,W 1

2 (Ω))
)
,

where k2 ≥ 1 is a constant that depends on ϕ. So

µ(E)Φ−1

(
k2

µ(E)

)
≤ k2B1k1 cap(E,W 1

2 (Ω)).

Since Φ is a nondecreasing function, dropping k2 in the left-hand side of the
above inequality gives

µ(E)Φ−1
(

1
µ(E)

)
cap(E,W 1

2 (Ω))
≤ k2B1k1 .

Hence
B ≤ k2B1k1

(see (3.17)).

Lemma 3.2.5. Let b > 0 and Ψ : [b,+∞) −→ R+ be a non-increasing
function such that there exist l > 0 and q ∈ (0, 1) for which

Ψ(t+ l) ≤ qΨ(t), ∀t ∈ [b,+∞). (3.20)

Then ∀m ≥ 0 there exists a constant C5 = C5(b, q, l,m) < +∞ such that∫ +∞

u

tmΨ(t) dt ≤ C5u
mΨ(u) , ∀u ∈ [b,+∞). (3.21)
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Proof. ∫ +∞

u

tmΨ(t) dt =
∞∑
k=0

∫ u+(k+1)l

u+kl

tmΨ(t) dt

=
∞∑
k=0

∫ u+l

u

(x+ kl)mΨ(x+ kl) dx

≤
∞∑
k=0

(
1 +

kl

u

)m
qk
∫ u+l

u

xmΨ(x) dx

≤

(
∞∑
k=0

(
1 +

kl

b

)m
qk

)
︸ ︷︷ ︸

<∞

(u+ l)mΨ(u)l

≤ C0(b, q, l,m)l

(
1 +

l

u

)m
umΨ(u)

≤ C0(b, q, l,m)l

(
1 +

l

b

)m
umΨ(u)

=: C5(b, q, l,m)umΨ(u) , ∀u ∈ [b,+∞).

Lemma 3.2.6. (cf. [33, Corollary 11.8/2]) Consider the complementary N-
functions B(t) = (1 + t) ln(1 + t)− t and A(t) = et− 1− t. Let Q be the unit
square with edges chosen in any direction. Then the inequality

‖w2‖A,Q,µ ≤ C4‖w‖2
W 1

2 (Q)

holds if for some α > 0

µ(B(x, r)) ≤ rα , ∀x ∈ Q and ∀r ∈ (0, 1] , (3.22)

where C4 (see (3.16)) is a constant depending only on α .

Proof. First note that B′(t) and A′(t) are direct inverses of each other. Let

%(t) = tB−1
(

1
t

)
and 1

t
= B(s). Then %(t) = s

B(s)
. Since d

ds
(B(s)

s
) = − 1

s2
ln(1 +

s) + 1
s
> 0, for s > 0, then s

B(s)
is a decreasing function of s. It is also clear

that s
B(s)
−→ 0 as s −→ ∞. Hence %(t) is an increasing function of t and

%(t) −→ 0 as t −→ 0+. So

%(t) = tB−1

(
1

t

)
=
√

2t (1 + o(1)) as t −→∞ (3.23)
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and

%(t) = tB−1

(
1

t

)
=

1

ln 1
t

(1 + o(1)) as t −→ 0 (3.24)

(see Appendix 5.3). Let ϕ(τ) = %−1(τ). Then for small values of τ

ϕ(τ) = τe−
1
τ eO(1) (3.25)

(see (5.5) in Appendix 5.3) and for large values of τ

ϕ(τ) =
τ 2

2
(1 + o(1)).

By (3.18), for large values of u (small values of t) we have∫ +∞

u

tσ(t) dt =

∫ +∞

u

t2ϕ

(
1

t

)
dt

=

∫ +∞

u

te−teO(1) dt.

By Lemma 3.2.5,∫ +∞

u

te−teO(1) dt ≤ Cue−ueO(1) as u −→ +∞.

Hence ∫ +∞

u

tσ(t) dt ≤ Cue−ueO(1)

= Cu2ϕ

(
1

u

)
eO(1)

= Cuσ(u)eO(1) as u −→ +∞.

For small values of v (large values of t), the function vϕ( 1
v
) = 1

2v
(1 + o(1))

is not integrable at zero. However,

tσ(t) = t2ϕ

(
1

t

)
=

1

2
(1 + o(1)) as t −→ 0 + .

Hence ∫ +∞

u

tσ(t) dt −→ constant as u −→ 0+

and

uσ(u) −→ 1

2
as u −→ 0 + .
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Thus ϕ(τ) satisfies condition (3.18) for all values of u.
It now remains to establish the finiteness of the constant B1 in theorem 3.2.4.
For 0 < r ≤ 1

2

B1 = sup

{
| ln r|µ(B(x, r))B−1

(
1

µ(B(x, r))

)}
= sup

| ln r|
| lnµ(B(x, r))|

(1 + o(1))

≤ const sup
| ln r|
| ln rα|

= const sup
| ln r|
|α ln r|

=
const

α
.

Thus one can take C4 ∼ 1
α

.

We will also use the following notation:

wE :=
1

|E|

∫
E

w(x) dx , (3.26)

where E ⊂ R2 is a set with finite Lebesgue measure |E|.

Lemma 3.2.7. Let µ be a positive Radon measure satisfying (3.22). Then
for any V ∈ LB(Q, µ), V ≥ 0 there is a constant C6 > 0 such that∫

Q

V |w(x)|2dµ(x) ≤ C6‖V ‖B,Q,µ
∫
Q

|∇w|2dx, (3.27)

for all w ∈ W 1
2 (Q) ∩ C(Q) with wQ = 0.

Proof. The proof of this Lemma follows from the Hölder inequality for Orlicz
spaces (see (1.17)), Lemma 3.2.6 and the Poincaré inequality (see [33, 1.1.11],
see also Appendix 5.2).

Definition 3.2.8. Let (X1,Σ1) and (X2,Σ2) be a pair of measurable spaces.
Given a measure µ1 on (X1,Σ1) and a measurable function ξ on (X1,Σ1) into
(X2,Σ2), we define the pushforward measure or image µ2 := µ1 ◦ ξ−1 of µ1

under ξ by µ2(E) = µ1(ξ−1(E)) for E ∈ Σ2. µ2 is a measure on (X2,Σ2).

Lemma 3.2.9. [49, Lemma 5.0.1] For every non-negative measurable func-
tion ϕ on (X2,Σ2) ∫

X2

ϕdµ2 =

∫
X1

ϕ ◦ ξ dµ1 , (3.28)

where µ2 = µ1 ◦ ξ−1. Moreover, ϕ ∈ L1(X2,Σ2, µ2) if and only if ϕ ◦ ξ ∈
L1(X1,Σ1, µ1) and (3.28) holds for all ϕ ∈ L1(X2,Σ2, µ2).
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Let ξ(x) =

(
R1 0
0 R2

)
x + x0, x, x0 ∈ R2, R1, R2 > 0, be an affine trans-

formation. Let l1 and l2 be any two perpendicular lines in R2 chosen in
directions that satisfy Corollary 3.1.2 and Q the unit square with sides in di-
rections also satisfying Corollary 3.1.2. Let I1 and I2 be respective segments
of l1 and l2 such that I1 × I2 is a rectangle and ξ(Q) = I1 × I2. Further, let
µ̃ := µ ◦ ξ and Ṽ := V ◦ ξ. Then for any c > 0, one gets using (1.16) and
(3.28)

‖V ‖(av)
B,I1×I2,µ = sup

{∣∣∣∣∫
I1×I2

V f dµ

∣∣∣∣ :

∫
I1×I2

A(|f |) dµ ≤ µ(I1 × I2)

}
= sup

{
1

c

∣∣∣∣∫
Q

Ṽ g d(cµ̃)

∣∣∣∣ :

∫
Q

A(|g|) d(cµ̃) ≤ cµ̃(Q)

}
=

1

c
‖Ṽ ‖(av)

B,Q,cµ̃ , (3.29)

where g := f ◦ ξ. Hence by Corollary 1.3.11 we have

‖Ṽ ‖B,Q,cµ̃ ≤
1

min{1, cµ̃(Q)}
‖Ṽ ‖(av)

B,Q,cµ̃

≤ c

min{1, cµ̃(Q)}
‖V ‖(av)

B,I1×I2,µ . (3.30)

Lemma 3.2.10. Let I1 and I2 be defined as above. Suppose µ satisfies (3.7)
and the rectangle I1 × I2 is centred in the support of the measure µ. Then
for any V ∈ LB(I1 × I2, µ), V ≥ 0∫

I1×I2
V (y)|w(y)|2dµ(y)

≤ C6
c1

c0

2α max

{
R1

R2

,
R2

R1

}α+1

‖V ‖(av)
B,I1×I2,µ

∫
I1×I2

|∇w(y)|2dy (3.31)

for all w ∈ W 1
2 (I1 × I2) ∩ C(I1 × I2) with wI1×I2 = 0 (see (3.26)), where C6

is the constant in Lemma 3.2.7.

Proof. Take ∀x ∈ Q such that ξ(x) ∈ suppµ. For any disk B(x, r) the
image ξ(B(x, r)) contains the disk of radius min{R1, R2}r and is contained
in the disk of radius max{R1, R2}r both centred at ξ(x). Hence, (3.7) implies

c0 (min{R1, R2}r)α ≤ µ̃(B(x, r)) = µ (ξ(B(x, r))) ≤ c1 (max{R1, R2}r)α .
Let

c :=
1

c1 max{R1, R2}α
.
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Then Lemma 3.2.7 applies to the measure cµ̃. Using (3.30) and the inequality∫
Q

|∇(w ◦ ξ)(x)|2dx ≤ max

{
R1

R2

,
R2

R1

}∫
I1×I2

|∇w(y)|2dy

(see the proof of [44, Lemma 2]), we get∫
I1×I2

V (y)|w(y)|2dµ(y) =
1

c

∫
Q

V (ξ(x))|w(ξ(x))|2d(cµ(ξ(x)))

=
1

c

∫
Q

Ṽ (x)|(w ◦ ξ)(x)|2d(cµ̃(x))

≤ 1

c
C6‖Ṽ ‖B,Q,cµ̃

∫
Q

|∇(w ◦ ξ)(x)|2dx

≤ 1

c
C6 max

{
R1

R2

,
R2

R1

}
c

min{1, cµ̃(Q)}
‖V ‖(av)

B,I1×I2,µ

∫
I1×I2

|∇w(y)|2dy

(3.32)

But

1

min{1, cµ̃(Q)}
= max

{
1,

1

cµ̃(Q)

}
= max

{
1,
c1 max{R1, R2}α

µ(I1 × I2)

}

≤ max

1,
c1{R1, R2}α

c0

(
min{R1,R2}

2

)α


=
c1

c0

2α max

{
R1

R2

,
R2

R1

}α
. (3.33)

In the last inequality we use the fact I1×I2 contains a disk of radius min{R1,R2}
2

centred in the support of µ. Hence (3.32) and (3.33) yield (3.31).

Below we construct an example for which Lemma 3.2.10 fails if I1× I2 is not
centred in the support of µ.

Example 3.2.11. Let I1 × I2 = Q (the unit square). Let x0 be the lower
left corner of Q and suppose that suppµ ∩Q ⊆ B(x0, r) for small r. Let

w(x) :=



1, |x− x0| ≤ r,

ln(|x−x0|
√

2)
ln(r
√

2)
, r < |x− x0| < 1√

2
,

0, |x− x0| ≥ 1√
2
.
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Then introducing polar coordinates centred at x0, x− x0 = (ρ cos θ, ρ sin θ),
one has ∫

Q

|∇w(x)|2 dx =

∫ π
2

0

∫ 1√
2

r

∣∣∣∣∣ ddρ
(

ln
(
ρ
√

2
)

ln(r
√

2)

)∣∣∣∣∣
2

ρdρdθ

=
π

2

(
1

ln(r
√

2)

)2 ∫ 1√
2

r

1

ρ
dρ

=
π

2

(
1

ln(r
√

2)

)2

(− ln(r
√

2))

=
π

2

(
1

− ln(r
√

2)

)
. (3.34)

Let V ≡ 1. Then the left-hand side of (3.31) becomes∫
Q

V (x)|w(x)|2 dµ(x) =

∫
Q

dµ(x) = µ(Q). (3.35)

By (3.34),(3.35) and (1.28), (3.31) becomes

µ(Q) ≤ C6
c1

c0

2αΦ−1(1)µ(Q)
π

2

(
1

− ln(r
√

2)

)
which does not hold for small values of r.

However, one can prove an analogue of Lemma 3.2.10 with a different norm
in the right-hand side of (3.31) if I1 × I2 is not centred in the support of µ
(see Appendix 5.4).

Let G ⊂ R2 be a bounded set with Lipschitz boundary such that
0 < µ(G) < ∞. Let G∗ be a square with the same centre and edges of
length 3 times the length of the smallest square containing G chosen in the
directions θ0 and θ0 + π

2
from Corollary 3.1.2. Let

κ0(G) :=
µ(G∗)

µ(G)
.

Further, let

V∗(x) :=


V (x), if x ∈ G,

0, if x /∈ G.

Then
‖V∗‖(av)

B,G∗,µ = ‖V ‖(av),κ0
B,G,µ ≤ κ0‖V ‖(av)

B,G,µ , (3.36)

(see Lemma 1.3.10).
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Theorem 3.2.12. [46, Ch.VI, Theorem 5] There exists a bounded linear
operator

T : W 1
2 (G) −→ W 1

2 (R2)

which satisfies
Tw|G = w, ∀w ∈ W 1

2 (G) .

This together with the Poincaré inequality (see Appendix 5.2) imply∫
G∗
|∇(Tw)(x)|2 dx ≤

∫
R2

|∇(Tw)(x)|2 dx

≤ ‖T‖2‖w‖2
W 1

2 (G)

≤ ‖T‖2(1 + C2)

∫
G

|∇w(x)|2 dx (3.37)

for all w ∈ W 1
2 (G) with wG = 0.

Lemma 3.2.13. Let µ be a positive Radon measure on R2 that is Ahlfors
regular and G be defined as above. Choose and fix a direction satisfying
Corollary 3.1.2. Further, for all x ∈ G and for all r > 0, let Qx(r) be a square
with edges of length r in the chosen direction centred at x ∈ suppµ∩G. Then
for any V ∈ LB(G, µ), V ≥ 0 and any n ∈ N there exists a finite cover of
suppµ∩G by squares Qxk(rxk), rxk > 0, k = 1, 2, ..., n0, such that n0 ≤ n and∫

G

V (x)|w(x)|2dµ(x) ≤ C7n
−1‖V ‖(av)

B,G,µ

∫
G

|∇w(x)|2 dx (3.38)

for all w ∈ W 1
2 (G) ∩ C(G) with (Tw)Qxk (rxk ) = 0, k = 1, ..., n0 and wG = 0,

where the constant C7 is independent of V and n.

Proof. Let N ∈ N be the bound in the Besicovitch covering Lemma (see
Appendix 5.1). If n ≤ κ0N , one can take n0 = 0 and then using (3.31),
(3.36) and (3.37), we have∫
G

V (x)|w(x)|2 dµ(x) =

∫
G∗
V∗(x)|w(x)|2 dµ(x)

≤ C6
c1

c0

2ακ0Nn
−1‖V∗‖(av)

B,G∗,µ

∫
G∗
|∇(Tw)(x)|2 dx

≤ C6
c1

c0

2ακ0Nn
−1κ0‖V ‖(av)

B,G,µ‖T‖
2(1 + C2)

∫
G

|∇(w)(x)|2 dx

= C7n
−1‖V ‖(av)

B,G,µ

∫
G

|∇(w)(x)|2 dx ,
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where C7 :=
C6c12ακ20N‖T‖2(1+C2)

c0
.

Now assume that n > κ0N , then for any x ∈ suppµ∩G, Lemma 3.1.3 implies
there is a closed square Qx(rx) centred at x such that

‖V∗‖(av)
B,Qx(rx),µ = κ0Nn

−1‖V ‖(av)
B,G,µ. (3.39)

Since κ0Nn
−1 < 1, it is not difficult to see that Qx(rx) ⊆ G∗. Consider the

covering Ξ = {Qx(rx)} of suppµ ∩ G. Then according to the Besicovitch
covering Lemma, Ξ has a countable or finite subcover Ξ′ that can be split
into N subsets Ξ′j, j = 1, ..., N in such a way that the closed squares in each
subset are pairwise disjoint. Applying Lemma 1.3.8 and (3.36) one has

κ0Nn
−1‖V ‖(av)

B,G,µcard Ξ′j =
∑

Qx(rx)∈Ξ′j

‖V∗‖(av)
B,Qx(rx),µ ≤ ‖V∗‖

(av)
B,G∗,µ

≤ κ0‖V ‖(av)
B,G,µ .

Hence card Ξ′j ≤ nN−1 and

n0 := card Ξ′ =
N∑
j=1

card Ξ′j ≤ n.

Again, using (3.31), (3.37) and (3.39), we have∫
G

V (x)|w(x)|2dµ(x) =

∫
suppµ∩G

V (x)|w(x)|2dµ(x)

≤
n0∑
k=1

∫
Qxk (rxk )

V∗(x)|(Tw)(x)|2 dµ(x)

≤ C6
c1

c0

2α
n0∑
k=1

‖V∗‖(av)
B,Qxk (rxk ),µ

∫
Qxk (rxk )

|∇(Tw)(x)|2dx

= C6
c1

c0

2αn−1κ0N‖V ‖(av)
B,G,µ

n0∑
k=1

∫
Qxk (rxk )

|∇(Tw)(x)|2 dx

= C6
c1

c0

2ακ0n
−1N‖V ‖(av)

B,G,µ

N∑
j=1

∑
Qxk (rxk )∈Ξ′j

∫
Qxk (rxk )

|∇(Tw)(x)|2 dx

≤ C6
c1

c0

2ακ0n
−1N‖V ‖(av)

B,G,µ

N∑
j=1

∫
G∗
|∇(Tw)(x)|2 dx

≤ C6
c1

c0

2ακ0n
−1N2‖T‖2(1 + C2)‖V ‖(av)

B,G,µ

∫
G

|∇w(x)|2 dx

= C7n
−1‖V ‖(av)

B,G,µ

∫
G

|∇w(x)|2 dx ,
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where C7 := C6c12ακ0N2‖T‖2(1+C2)
c0

.

Let G in Lemma 3.2.13 be the unit square Q centred in the support of µ.
Then

µ(Q) ≥ c0

(
1

2

)α
and µ(Q∗) ≤ c1

(
3√
2

)α
.

Hence
µ(Q∗) ≤ c1

c0

(
3
√

2
)α
µ(Q) = κ0µ(Q) , (3.40)

where
κ0 :=

c1

c0

(
3
√

2
)α
.

Let

E2V µ,Q[w] :=
∫
Q
|∇w(x)|2dx− 2

∫
Q
V (x)|w(x)|2dµ(x),

Dom (E2V µ,Q) = W 1
2 (Q) ∩ L2 (Q, V dµ) .

Lemma 3.2.14. [ cf. Lemma 2.2.5]

N−(E2V µ,Q) ≤ C8‖V ‖(av)
B,Q,µ + 2, ∀V ≥ 0, (3.41)

where C8 := 2C7 and C7 is the constant in Lemma 3.2.13.

Proof. Let n =
[
C8‖V ‖(av)

B,Q,µ

]
+ 1 in Lemma 3.2.13, where [a] denotes the

largest integer not greater than a. Take any linear subspace L ⊂ Dom (E2V µ,Q)
such that

dimL >
[
C8‖V ‖(av)

B,Q,µ

]
+ 2.

Since n0 ≤ n, there exists w ∈ L \ {0} such that wQxk (rxk ) = 0, k = 1, . . . , n0

and wQ = 0. Then

E2V µ,Q[w] =

∫
Q

|∇w(x)|2dx− 2

∫
Q

V (x)|w(x)|2dµ(x)

≥
∫
Q

|∇w(x)|2dx−
C8‖V ‖(av)

B,Q,µ[
C8‖V ‖(av)

B,Q,µ

]
+ 1

∫
Q

|∇w(x)|2dx

≥
∫
Q

|∇w(x)|2dx−
∫
Q

|∇w(x)|2dx = 0.

Hence
N−(E2V µ,Q) ≤

[
C8‖V ‖(av)

B,Q,µ

]
+ 2 ≤ C8‖V ‖(av)

B,Q,µ + 2.
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Lemma 3.2.15. There is a constant C9 > 0 such that

N−(E2V µ,Q) ≤ C9‖V ‖(av)
B,Q,µ ∀V ≥ 0. (3.42)

Proof. By Lemma 3.2.10 there is a constant C10 such that

2

∫
Q

V (x)|w(x)|2dµ(x) ≤ C10‖V ‖(av)
B,Q,µ

∫
Q

|∇w(x)|2dx

for all w ∈ W 1
2 (Q) ∩ C(Q) and wQ = 0, where C10 := C6

c1
c0

2α+1.

If ‖V ‖(av)
B,Q,µ ≤ 1

C10
, then

N−(E2V µ,Q) = 0.

If ‖V ‖(av)
B,Q,µ >

1
C10

, then Lemma 3.2.14 implies

N−(E2V µ,Q) ≤ 2

(
1

2
C8‖V ‖(av)

B,Q,µ + 1

)
≤ C9‖V ‖(av)

B,Q,µ, (3.43)

where C9 := C8 + 2C10.

Remark 3.2.16. Let

E1
2V µ,Q[w] := ‖w‖2

W 1
2 (Q)
− 2

∫
Q
V (x)|w(x)|2dµ(x),

Dom (E1
2V µ,Q) = W 1

2 (Q) ∩ L2 (Q, V dµ) .

Then there is no need for the Poincaré inequality and the condition that
wQ = 0, and one can obtain as above

N−(E1
2V,Q,µ) ≤ C9‖V ‖(av)

B,Q,µ ∀V ≥ 0. (3.44)

Let ∆1 be a square of side of length 2
(

2 c1
c0

) 1
α

centred at 0. Then it is easy

to see that a similar estimate holds with perhaps a different constant C ′9 in
place of C9.

Assume without loss of generality that 0 ∈ suppµ. Let

Qn :=

{
x ∈ R2 :

(
2
c1

c0

)n−1
α

≤ |x| ≤
(

2
c1

c0

)n
α

}
, n ∈ Z.

Let

EN ,2V µ,Qn [w] =

∫
Qn

|∇w(x)|2dx− 2

∫
Qn

V (x)|w(x)|2 dµ(x),

Dom(EN ,2V µ,Qn) = W 1
2 (Qn) ∩ L2(Qn, V dµ), wQn = 0.

Then we have the following Lemma.

69



Lemma 3.2.17. There exists a constant C11 > 0 such that

N− (EN ,2V µ,Qn) ≤ C11‖V ‖(av)
B,Qn,µ , ∀V ≥ 0. (3.45)

Proof. We start with the case n = 1. Since wQ1 = 0, then it follows from the
Poincaré inequality that there is a constant C12 > 0 such that

‖w‖2
W 1

2 (Q1) ≤ C12

∫
Q1

|∇w(x)|2 dx.

This implies

EN ,2V µ,Q1 [w] ≥ 1

C12

‖w‖2
W 1

2 (Q1) − 2

∫
Q1

V (x)|w(x)|2 dµ(x).

Let ∆1 be the square of side of length 2
(

2 c1
c0

) 1
α

with the same centre as Q1

and

V∗(x) :=


V (x), if x ∈ Q1,

0, if x /∈ Q1.

Let
T1 : W 1

2 (Q1) −→ W 1
2 (R2)

be a bounded linear operator such that T1w|Q1 = w for all w ∈ W 1
2 (Q1) (see

Theorem 3.2.12). Then

EN ,2V µ,Q1 [w] ≥ 1

C12‖T1‖2
‖T1w‖2

W 1
2 (∆1) − 2

∫
∆1

V∗(x)|(T1w)(x)|2 dµ(x)

≥ 1

C12‖T1‖2

(
‖T1w‖2

W 1
2 (∆1) − 2C12‖T1‖2

∫
∆1

V∗(x)|(T1w)(x)|2 dµ(x)

)
Hence

N− (EN ,2V µ,Q1) ≤ N−
(
E2C12‖T1‖2V∗µ,∆1

)
≤ 2C ′9C12‖T1‖2‖V∗‖(av)

B,∆1,µ
,

where C ′9 is the constant in Remark 3.2.16 and

E2C12‖T1‖2V∗µ,∆1
[w] = ‖w‖2

W 1
2 (∆1) − 2C12‖T1‖2

∫
∆1

V∗(x)|(w)(x)|2 dµ(x),

Dom(E2C12‖T1‖2V∗µ,∆1
) =

{
w ∈ W 1

2 (∆1) ∩ L2(∆1, V∗dµ)
}
.
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Now

µ(∆1) ≤ c1

(
√

2

(
2
c1

c0

) 1
α

)α

=
c2

1

c0

2
α
2

+1

and

µ(Q1) = µ

(
B

(
0,

(
2
c1

c0

) 1
α

))
− µ (B(0, 1)) ≥ c02

c1

c0

− c1 = c1.

So

µ(∆1) ≤ c2
1

c0

2
α
2

+1 =
c1

c0

2
α
2

+1µ(Q1). (3.46)

This implies

‖V∗‖(av)
B,∆1,µ

= sup

{∣∣∣∣∫
∆1

V∗u dµ

∣∣∣∣ :

∫
∆1

A(|u|)dµ ≤ µ(∆1)

}
= sup

{∣∣∣∣∫
Q1

V u dµ

∣∣∣∣ :

∫
Q1

A(|u|)dµ ≤ c1

c0

2
α
2

+1µ(Q1)

}
≤ c1

c0

2
α
2

+1‖V ‖(av)
B,Q1,µ

(see Lemma 1.3.10). Hence

N− (EN ,2V µ,Q1) ≤ C11‖V ‖(av)
B,Q1,µ

, ∀V ≥ 0, (3.47)

where
C11 := 2C ′9C12‖T1‖2 c1

c0

2
α
2

+1.

As far as the dependency on the measure µ is concerned, C11 depends only
on the ratio c1

c0
.

Let ξ : Q1 −→ Qn by given by ξ(x) := x
(

2 c1
c0

)n−1
α

. Let Ṽ := V ◦ ξ, µ̃ := µ◦ ξ
and w̃ := w ◦ ξ. Then it is easy to see that µ̃ satisfies the following analogue
of (3.7)

c̃0r
α ≤ µ̃(B(x, r)) ≤ c̃1r

α

for all 0 < r ≤ diam(supp µ̃) and x ∈ supp µ̃, where c̃0 := c0

(
2 c1
c0

)n−1

,

c̃1 := c1

(
2 c1
c0

)n−1

, and c̃1
c̃0

= c1
c0

. Now∫
Qn

|∇w(y)|2dy − 2

∫
Qn

V (y)|w(y)|2dµ(y)

=

∫
Q1

|∇w̃(x)|2dx− 2

∫
Q1

Ṽ (x)|w̃(x)|2dµ̃(x).
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It follows from (3.47) that

N− (EN ,2V µ,Qn) = N−
(
EN ,2Ṽ µ̃,Q1

)
≤ C11‖Ṽ ‖(av)

B,Q1,µ̃
, ∀Ṽ ≥ 0.

Similarly to (3.29) with c = 1, we have ‖Ṽ ‖(av)
B,Q1,µ̃

= ‖V ‖(av)
B,Qn,µ. Thus

N− (EN ,2V µ,Qn) ≤ C11‖V ‖(av)
B,Qn,µ ∀V ≥ 0.

Hence the scaling x 7−→ x
(

2 c1
c0

)n−1
α

allows one to reduce the case of any

n ∈ Z to the case n = 1.

Let
Dn := ‖V ‖(av)

B,Qn,µ.

Then for any c < 1
C11

, the above Lemma together with the variational prin-
ciple imply

N− (EN ,2V µ) ≤ C11

∑
{n∈Z, Dn>c}

Dn , ∀V ≥ 0. (3.48)

Thus Theorem 3.2.1 follows from (1.65), (3.13) and (3.48).

Theorem 3.2.18. Let V ≥ 0. If N−(EγV µ,R2) = O(γ) as γ −→ +∞, then
‖Gn‖1,w <∞.

Proof. This follows by replacing the Lebesgue measure with µ in the proof
of [43, Theorem 9.1] and the proof of [43, Theorem 9.2].

No estimate of the type

N−(EV µ,R2) ≤ const +

∫
R2

V (x)W (x) dµ(x) + const‖V ‖Ψ,R2,µ (3.49)

can hold with norm ‖V ‖Ψ,R2,µ weaker than ‖V ‖B,R2,µ provided the weight
functionW is bounded in a neighbourhood of at least one point in the support
of µ (see the next Theorem).

Theorem 3.2.19. (cf. [43, Theorem 9.4]) Let W ≥ 0 be bounded in a
neighbourhood of at least point in the support of µ and Ψ an a N-function
such that

lim
s−→∞

Ψ(s)

B(s)
= 0.

Then there exists a compactly supported V ≥ 0 such that∫
R2

V (x)W (x) dµ(x) + ‖V ‖Ψ,R2,µ <∞

and N−(EV µ,R2) =∞.
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Proof. Shifting the independent variable if necessary, we can assume that
0 ∈ supp µ and W is bounded in a neighborhood of 0. Let r0 > 0 be such
that W is bounded in the open ball B(0, r0).
Let

β(s) := sup
t≥s

Ψ(t)

B(t)
.

Then β is a non-increasing function, β(s) → 0 as s → ∞, and Ψ(s) ≤
β(s)B(s). Since Ψ is an N -function, Ψ(s)/s → ∞ as s → ∞ (see §1.3).

Hence there exists s0 ≥ e
1
α > 1, 0 < α ≤ 2 such that Ψ(s) ≥ s and β(s) ≤ 1

for s ≥ sα0 . Choose ρk ∈ (0, 1/s0) in such a way that

∞∑
k=1

β

(
1

ραk

)
<∞.

It follows from (3.7) that ∀r > 0, the disk B(0, r) contains points of the
support of µ different from 0. Let x(1) ∈ suppµ\{0} be such that |x(1)| < 2

3
r0.

We can choose x(k), k ∈ N inductively as follows:
Suppose x(1), ..., x(k) ∈ suppµ \ {0} have been chosen. Take
x(k+1) ∈ supp µ \ {0} such that

|x(k+1)| < min

{
1

3
|x(k)|, 2ρk+1

}
.

Since |x(k+1)| < 1
3
|x(k)|, it is easy to see that the open disks B(x(k), 1

2
|x(k)|),

k ∈ N lie in B(0, r0) and are pairwise disjoint. Let rk := 1
2
|x(k)|. Then

rk ≤ ρk, k ∈ N. For some constant C13 > 0, let

tk := C13

ln 1
rk

r−2α
k

V (x) :=

{
tk, x ∈ B

(
x(k), r2

k

)
, k ∈ N,

0, otherwise.

Since the function rαk ln 1
rk

has its maximum as e
α
> 1, 0 < α ≤ 2, then one

can choose C13 > 0 such that C13
α
e
> 1 and

tk =
C13

ln 1
rk

r−2α
k =

C13

rαk ln 1
rk

r−αk >
1

rαk
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and∫
R2

Ψ(V (x)) dµ(x) =
∞∑
k=1

Ψ(tk)µ
(
B(x(k), r2

k)
)
≤

∞∑
k=1

Ψ(tk)c1r
2α
k

≤ c1

∞∑
k=1

r2α
k β(tk)B(tk)

≤ c1

∞∑
k=1

r2α
k β(tk)(1 + tk) ln(1 + tk)

< 4c1

∞∑
k=1

r2α
k β(tk)tk ln tk

= 4c1

∞∑
k=1

β(tk)
C13

ln 1
rk

ln
C13

r2α
k ln 1

rk

≤ 4c1C13

∞∑
k=1

β

(
1

rαk

)
1

ln 1
rk

ln
C13

r2α
k

≤ const
∞∑
k=1

β

(
1

rαk

)
≤ const

∞∑
k=1

β

(
1

ραk

)
<∞.

Thus ‖V ‖Ψ,R2,µ <∞. Since tk >
1
rαk
≥ sα0 , then tk ≤ Ψ(tk) and∫

R2

V (x) dµ(x) ≤
∫
R2

Ψ(V (x)) dµ(x) <∞.

By the assumption that W is bounded in B(0, r0), we have∫
R2

V (x)W (x) dµ(x) <∞ .

Let

wk(x) :=



1, |x− x(k)| ≤ r2
k,

ln(rk/|x−x(k)|)
ln(1/rk)

, r2
k < |x− x(k)| ≤ rk,

0, |x− x(k)| > rk

(cf. [17]). Then ∫
R2

|∇wk(x)|2 dx =
2π

ln(1/rk)
.
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Further,∫
R2

V (x)|wk(x)|2 dµ(x) ≥
∫
B(x(k),r2k)

V (x) dµ(x) = tkµ
(
B
(
x(k), r2

k

))
> tkc0r

2α
k = c0

C13

ln 1
rk

.

Hence for any C13 >
2π
c0

EV µ,R2 [wk] < 0, ∀k ∈ N

and N−(EV µ,R2) =∞.
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Chapter 4

Two dimensional Schrödinger
Operators on a Strip

4.1 Introduction

In this chapter, we establish upper estimates for the number of eigenvalues
below the essential spectrum of two dimensional Schrödinger operators on
a strip in terms of weighted L1 and Orlicz (L logL) norms of the potential.
Depending on the boundary conditions, the discrete spectrum of such oper-
ators might contain positive eigenvalues. However, we still use the strategy
used in the previous chapter although some details are different. Generally,
we study the operator on L2(S)

HV = −∆− V µ, V ≥ 0, (4.1)

where S := {(x1, x2) ∈ R2 : x1 ∈ R, 0 < x2 < a}, a > 0 is a strip, V
and µ are as defined in § 1.6. Like in the previous case, the problem is also
split into two problems. The first one is defined by the restriction of the
quadratic form associated with the operator (4.1) to the subspace of func-
tions of the form w(x1)u1(x2), where u1 is the first eigenfunction of the one
dimensional differential operator on (0, a) and hence, is reduced to a well
studied one-dimensional Schrödinger operator with the potential equal to a
weighted mean value Ṽ of V over (0, a). The second problem is defined by a
class of functions orthogonal to u1 in the L2([0, a]) inner product.

As a motivation to our problem, we start by looking at a simple case where
the operator (4.1) is considered on S with Neumann boundary conditions and
µ being the two dimensional Lebesgue measure (see the next section below).
In this case, σess(HV ) = [0,∞). Later, we consider (4.1) on S with Robin
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boundary conditions and derive Dirichlet and Dirichlet-Neumann boundary
conditions as particular cases.

4.2 Motivation: The case of Neumann bound-

ary conditions

Let S be the strip defined above and let V be locally integrable on S. Con-
sider the following Schrödinger operator on L2(S)

HV := −∆− V, V ≥ 0

with Neumann boundary conditions both at x2 = 0 and x2 = a. In this case
the first eigenvalue λ1 of −∆ on [0, a] is equal to zero and the corresponding
eigenfunction u1(x2) = 1. Thus σ(HV ) = [0,∞) (see Theorem1.5.2). Define
HV via its quadratic form as follows:

ENV,S[u] :=

∫
S

| ∇u(x) |2 dx−
∫
S

V (x) | u(x) |2 dx,

Dom(ENV,S) = W 1
2 (S) ∩ L2(S, V dx).

Here the superscript N represents the Neumann boundary conditions. We
denote by N−(ENV,S) the number of negative eigenvalues of HV counting mul-
tiplicities. The task is to find an upper estimate for N−(ENV,S) in terms of the
norms of V .

Let
L1 := {u ∈ L2(S) : u(x) = u(x1)}

and P : L2(S) −→ L1 be a projection defined by

Pv(x) :=
1

a

∫ a

0

v(x)dx2 = Pv(x1).

Indeed, P is a projection since P 2 = P . Let L2 := (I−P )L2(S), then one can
show that L2(S) = L1 ⊕ L2. Here and below ⊕ denotes a direct orthogonal
sum.
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Indeed for all v ∈ L2 we have,∫ a

0

v(x)dx2 =

∫ a

0

(I − P )v(x)dx2

=

∫ a

0

v(x)dx2 −
∫ a

0

Pv(x)dx2

=

∫ a

0

v(x)dx2 −
∫ a

0

Pv(x1)dx2

=

∫ a

0

v(x)dx2 −
∫ a

0

v(x)dx2

= 0.

Now pick w ∈ L1 and v ∈ L2, then,

〈v, w〉L2(S) =

∫
S

v(x)w(x1) dx =

∫
R

(∫ a

0

v(x) dx2

)
w(x1)dx1

= 0.

Similarly, let

H1 := {u ∈ W 1
2 (S) : u(x) = u(x1)} and H2 := (I − P )W 1

2 (S),

then
W 1

2 (S) = H1 ⊕H2.

Indeed, for all v ∈ H1 and all w ∈ H2 we have

< v,w >W 1
2 (S)=

∫
S

(
v(x1)w(x) + vx1(x1)wx1(x) + vx2(x1)wx2(x)

)
dx = 0.

This is so because v, vx1 ∈ L1, w, wx1 ∈ L2 and vx2 = 0. To see this note
that v(x1) and vx1(x1) do not depend on x2 implying that vx1 ∈ L1. Also,
w ∈ L2 ⇔

∫ a
0
w(x)dx2 = 0. So, d

dx1

∫ a
0
w(x) dx2 = 0 ⇒

∫ a
0
wx1(x) dx2 = 0 ⇒

wx ∈ L2. Hence
∫
S
vx(x)wx(x, y)dxdy = 0.

Now for all u ∈ W 1
2 (S), u = v + w, v ∈ H1, w ∈ H2 one has∫

S

| ∇u(x) |2 dx = a

∫
R
| v′(x1) |2 dx1 +

∫
S

| ∇w(x) |2 dx

+

∫
S

∇v(x1).∇w(x) dx+

∫
S

∇w(x).∇v(x1) dx︸ ︷︷ ︸
=0

= a

∫
R
| v′(x1) |2 dx1 +

∫
S

| ∇w(x) |2 dx
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and∫
S

V (x) | u(x) |2 dx =

∫
S

V (x) | v(x1) |2 dx+

∫
S

V (x) | w(x) |2 dx

+

∫
S

2V (x)Re(v.w)dx︸ ︷︷ ︸
possibly6=0 because of V

≤ 2

∫
R
Ṽ (x1) | v(x1) |2 dx1 + 2

∫
S

V (x) | w(x) |2 dx

where

Ṽ (x1) =

∫ a

0

V (x)dx2 .

So ∫
S

| ∇u(x) |2 dx−
∫
S

V (x) | u(x) |2 dx

≥
∫
R
| v′(x1) |2 dx1 − 2

∫
R
Ṽ (x1) | v(x1) |2 dx1

+

∫
S

| ∇w(x) |2 dx− 2

∫
S

V (x) | w(x) |2 dx .

Hence
N−(ENV,S) ≤ N−(E1,2Ṽ ) +N−(E2,2V ), (4.2)

where E1,2Ṽ and E2,2V denote the restrictions of the form EN2V,S to the spaces
H1 and H2 respectively.
Let

In := [2n−1, 2n], n > 0, I0 := [−1, 1], In := [−2|n|,−2|n|−1], n < 0,

An :=

∫
In

|x1|Ṽ (x1) dx1, n 6= 0, A0 :=

∫
I0

Ṽ (x1) dx1. (4.3)

Then similarly to (2.42) one has

N−(E1,2Ṽ ) ≤ 1 + 7.61
∑

{n∈Z, An>0.046}

√
An . (4.4)

We write (4.4) in terms of the original potential V .

An :=

∫
In

|x1|Ṽ (x1) dx1 =

∫
In

|x1|
(∫ a

0

V (x) dx

)
dx1

=

∫
In×[0,a]

|x1|V (x) dx =: An
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and

A0 :=

∫
I0

Ṽ (x1) dx1 =

∫
I0

(∫ a

0

V (x) dx

)
dx1

=

∫
I0×[0,a]

V (x) dx =: A0 .

Thus (4.4) becomes

N−(E1,2Ṽ ) ≤ 1 + 7.61
∑

{n∈Z, An>0.046}

√
An . (4.5)

It now remains to find an estimate for N−(E2,2V ) in (4.2).

Let Sn := Jn × I, n ∈ Z, where Jn := (n, n + 1) and I := (0, a). Then the
variational principle (see (1.67)) implies that

N−(E2,2V ) ≤
∑
n∈Z

N−(E2,2V,Sn), (4.6)

where

E2,2V,Sn [w] :=

∫
Sn

|∇w(x)|2 dx− 2

∫
Sn

V (x)|w(x)|2 dx,

Dom (E2,2V,Sn) =

{
w ∈ W 1

2 (Sn) ∩ L2 (Sn, V (x)dx) :

∫
Sn

w(x) dx = 0

}
.

Lemma 4.2.1. (cf. [43, Lemma 7.8]) There exists C14 > 0 such that

N−(E2,2V,Sn) ≤ C14‖V ‖L1(Jn,LB(I)), ∀V ≥ 0 (4.7)

(see (2.17)).

Proof. This Lemma follows from Lemma 2.2.5 and the scaling x2 7−→ ax2.

Let Dn :=‖ V ‖L1(Jn,LB(I)), n ∈ Z.

Theorem 4.2.2. There exist a constant c > 0 such that

N−(EV,S) ≤ 1 + 7.61
∑

{n∈Z,An>0.046}

√
An+C14

∑
{n∈Z,Dn>c}

Dn, ∀V ≥ 0. (4.8)
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Proof. If Dn < 1
C14

, then N−(E2,2V,Sn) = 0 and one can drop this term in the

sum (4.6). Hence for any c < 1
C14

, (4.6) and Lemma 4.2.1 imply that

N−(E2,2V ) ≤ C14

∑
{n∈Z,Dn>c}

Dn ∀V ≥ 0.

This together with (4.2) and (4.5) imply (4.8).

One can easily show that (4.8) is an improvement of the result by A. Grigor’yan
and N. Nadirashvili ([17, Theorem 7.9], see also (2.16)) with a different c and
that (4.8) is strictly sharper. Indeed, let Bn :=‖ V ‖B,Sn . Then there is a
constant C(p), p > 1 such that

Bn =‖ V ‖B,Sn≤ C(p)

(∫
Sn

V (x)p dx

) 1
p

= C(p)bn(V ),

where bn(V ) :=
(∫

Sn
V (x)p dx

) 1
p

(see [43, Remark 6.3]). Now suppose that

‖ V ‖(B,Sn)= 1. Since B(V ) satisfies the ∆2-condition, then
∫
Sn
B(V (x)) dx =

1 (see (9. 21) in [27]). Using (1.12) and (1.15), we have

Dn =

∫
Jn

‖V ‖B,I dx1 ≤ 2

∫
Jn

‖V ‖(B,I) dx1

≤ 2

∫ n+1

n

(
1 +

∫ a

0

B (V (x)) dx2

)
dx1

= 2 + 2

∫
Jn

∫ a

0

B (V (x)) dx = 4

= 4‖V ‖(B,Sn) ≤ 4‖V ‖B,Sn
= 4Bn ≤ 4C(p)bn(V ). (4.9)

Hence
N−(E2,2V,Sn) ≤ C15bn(V ), ∀V ≥ 0 , (4.10)

where C15 := 4C14C(p). The scaling V 7−→ tV, t > 0, allows one to extend
the above inequality to an arbitrary V ≥ 0. Thus for any c < 1

C15
, (4.8)

implies (2.16).

Next we will discuss different forms of (4.8).

Remark 4.2.3. Estimate (4.8) implies the following estimate

N−(ENV,S) ≤ 1 + C16

(
‖ (An)n∈Z ‖1,w +‖V ‖L1(R ,LB(I))

)
, ∀V ≥ 0. (4.11)
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This follows from ∑
{n∈Z,An>c}

√
An ≤

2√
c
‖ (An)n∈Z ‖1,w

(see (49) in [43]) and∑
{n∈Z,Dn>c}

Dn ≤
∑
n∈Z

Dn =

∫
R
‖ V (x1, .) ‖B,I dx1 = ‖V ‖L1(R,LB(I)).

(4.11) in turn implies the following

N−(ENV,S) ≤ 1+C17

(
‖ (An)n∈Z ‖1,w +

∫
R

(∫
I

| V (x) |p dx2

) 1
p

dx1

)
, ∀V ≥ 0,

(4.12)
which is equivalent to

N−(ENV,S) ≤ 1+C18

(
‖ (An)n∈Z ‖1,w +

∫
R

(∫
I

| V∗(x) |p dx2

) 1
p

dx1

)
, ∀V ≥ 0,

(4.13)

where V∗(x) = V (x)− Ṽ (x1), Ṽ (x1) =
∫ a

0
V (x)dx2.

Indeed, ∣∣∣∣∣
∫
R

(∫
I

| V (x) |p dx2

) 1
p

dx1 −
∫
R

(∫
I

| V∗(x) |p dx2

) 1
p

dx1

∣∣∣∣∣
≤

∫
R

(∫
I

| Ṽ (x1) |p dx2

) 1
p

dx1 = a
1
p

∫
R
Ṽ (x1)dx1

= a
1
p

∑
n∈Z

∫
In×[0,a]

V (x)dx ≤ a
1
p

∑
n∈Z

2−|n|+1An

≤ const sup
n∈Z

An ≤ const ‖ (An)n∈Z ‖1,w .

Thus (4.12) and (4.13) are equivalent.
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Similarly, ∣∣‖V ‖L1(R,LB(I)) − ‖V∗‖L1(R,LB(I))

∣∣
=

∣∣∣∣∫
R
‖ V (x1, .) ‖B,I dx1 −

∫
R
‖ V∗(x1, .) ‖B,I dx1

∣∣∣∣
≤
∫
R
‖Ṽ (x1)‖B,Idx1 = const

∫
R
|Ṽ (x1)| dx1

≤ const sup
n∈Z

An

≤ const ‖ (An)n∈Z ‖1,w .

Hence (4.11) is equivalent to the following estimate

N−(ENV,S) ≤ 1 + C19

(
‖ (An)n∈Z ‖1,w +‖V∗‖L1(R,LB(I))

)
, ∀V ≥ 0. (4.14)

Note the the last term in right hand side of (4.14) (and (4.13)) drops out if
V does not depend on x2.

4.3 Robin boundary conditions

These conditions can be considered as a generalization or a linear combination
of the Dirichlet and Neumann boundary conditions. Let V : R2 −→ R be a
Borel measurable function and µ a positive Radon measure on R2. Consider
the following operator

HR
V := −∆− V µ , V ≥ 0, on L2(S) (4.15)

with the following the Robin boundary conditions

ux2(x1, 0) + αu(x1, 0) = ux2(x1, a) + βu(x1, a) = 0, (4.16)

where α, β ∈ R. Here the superscript R represents Robin boundary condi-
tions and ux2 is the derivative of u with respect to x2. When α = β = 0 and µ
is the Lebesgue measure, we have the case of Neumann boundary conditions
discussed in the previous section.

As shown earlier in § 1.5, depending on the values of α and β the nega-
tive spectrum of the free Laplacian on S is not necessarily empty. Let

Sn := (n, n+ 1)× (0, a), n ∈ Z.

Throughout, the boundary conditions at x1 = n and x1 = n+ 1 are assumed
to be Neumann. Recall that σess(H

R
V ) = [λ1,∞) (see Theorem 1.5.2), where
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λ1 is the first eigenvalue of −∆ on the rectangle Sn. So, instead of HR
V , we

consider the operator

HR
λ1,V

:= −∆− λ1 − V µ on L2(S) (4.17)

with boundary conditions (4.16). We now have that σess(H
R
λ1,V

) = [0,∞).
Define HR

λ1,V
via its quadratic form

ERλ1,V µ,S[u] :=

∫
S

|∇u(x)|2 dx− λ1

∫
S

|u(x)|2 dx

− α

∫
R
|u(x1, 0)|2 dx1 + β

∫
R
|u(x1, a)|2 dx1

−
∫
S

V (x)|u(x)|2 dµ(x), (4.18)

Dom
(
ERλ1,V µ,S

)
=

{
u ∈ W 1

2 (S) ∩ L2(S, V dµ
}
.

Denote by N−
(
ERλ1,V µ,S

)
the number of negative eigenvalues of HR

λ1,V
count-

ing multiplicities. Then our aim in this section is to find upper estimates for
N−
(
ERλ1,V µ,S

)
in terms of norms of V .

Definition 4.3.1. (Local Ahlfors regularity) We say that the measure µ is
locally Ahlfors regular on S if the restriction of µ to Sn for all n ∈ Z is
Ahlfors regular (see (3.7)) and there exist constants c2, c3 > 0 such that

c2µ(Sn±1) ≤ µ(Sn) ≤ c3µ(Sn±1), ∀n ∈ Z . (4.19)

Thus for each n ∈ Z,

ck2µ(Sn±k) ≤ µ(Sn) ≤ ck3µ(Sn±k), ∀k ∈ N . (4.20)

From now onwards, it will be assumed that µ is locally Ahlfors regular on S.
Let

In := [2n−1, 2n], n > 0, I0 := [−1, 1], In := [−2|n|,−2|n|−1], n < 0,

Fn :=

∫
In

∫ a

0

|x1|V (x)|u1(x2)|2 dµ(x) n 6= 0 ,

F0 :=

∫
I0

∫ a

0

V (x)|u1(x2)|2 dµ(x) ,

Mn := ‖V ‖B,Sn,µ ,

where u1 is the normalized eigenfunction of −∆ on Sn corresponding to λ1

(here the normalization is with respect to the Lebesgue measure).

84



Theorem 4.3.2. There exist constants C, c > 0 such that

N−
(
ERλ1,V µ,S

)
≤ 1 + C

 ∑
{Fn>c, n∈Z}

√
Fn +

∑
{Mn>c, n∈Z}

Mn

 . (4.21)

The rest of this section is devoted to the proof of the above Theorem. We
begin with the necessary auxiliary results.

ERSn [u] :=

∫
Sn

| ∇u(x) |2 dx+β

∫ n+1

n

| u(x1, a) |2 dx1−α
∫ n+1

n

| u(x1, 0) |2 dx1,

(4.22)
for all u ∈ W 1

2 (Sn). Then

ERSn [u] = λ

∫
Sn

| u(x) |2 dx ,

implying that

λ =
ERSn [u]∫

Sn
| u(x) |2 dx

,

where λ is the eigenvalue of −∆ on Sn. By the Mini-Max principle, we have

λ1 = min
u∈W 1

2 (Sn)
u6=0

ERSn [u]∫
Sn
| u(x) |2 dx

,

λ2 = min
u∈W 1

2 (Sn)
u6=0,u⊥u1

ERSn [u]∫
Sn
| u(x) |2 dx

,

where u1 is the normalized eigenfunction of −∆ on Sn corresponding to λ1.
Hence for all u ∈ W 1

2 (Sn), u ⊥ u1, one has

λ2

∫
Sn

| u(x) |2 dx ≤ ERSn [u],

which in turn implies

ERSn [u]− λ1

∫
Sn

| u(x) |2 dx = ERSn [u]− λ2

∫
Sn

| u(x) |2 dx+ (λ2 − λ1)

∫
Sn

|u(x)|2 dx

≥ (λ2 − λ1)

∫
Sn

|u(x)|2 dx.

Hence,∫
Sn

|u(x)|2 dx ≤ 1

λ2 − λ1

(
ERSn [u]− λ1

∫
Sn

|u(x)|2 dx
)
, ∀u ∈ W 1

2 (Sn), u ⊥ u1.

(4.23)
Since λ1 < λ2, then (4.23) holds for all u ∈ W 1

2 (Sn), u ⊥ u1.
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Lemma 4.3.3. [Ehrling’s Lemma] Let X0, X1 and X2 be Banach spaces
such that X2 ↪→ X1 is compact and X1 ↪→ X0. Then for every ε > 0, there
exists a constant C(ε) > 0 such that

‖u‖X1 ≤ ε‖u‖X2 + C(ε)‖u‖X0 , ∀u ∈ X2 . (4.24)

See, e.g., [35] for details and proof.

Definition 4.3.4. Let S(R2) be the class of all functions ϕ ∈ C∞(R2) such
that for any multi-index γ and any k ∈ N,

sup
x∈R2

(1 + |x|)k|∂γϕ(x)| <∞.

Denote by S ′(R2) the dual space of S(R2). For s > 0, let

Hs(R2) :=

{
u ∈ S ′(R2) :

∫
R2

(1 + |ξ|2)s|û(ξ)|2dξ <∞
}
, s ∈ R.

Here, û(ξ) is the Fourier image of u(x) defined by

û(ξ) =
1

2π

∫
R2

e−ixξu(x)dx.

Let
Hs(Sn) :=

{
v = ṽ|Sn : ṽ ∈ Hs(R2)

}
,

‖v‖Hs(Sn) := inf
ṽ∈Hs(R2)
ṽ|Sn=v

‖ṽ‖Hs(R2) .

Now, let X0 = L2(Sn), X1 = Hs(Sn) for 1
2
< s < 1 and X2 = W 1

2 (Sn) in
Theorem 4.3.3. That X2 ↪→ X1 is compact follows from the Sobolev compact
embedding theorem (see, e.g., [1, Ch. VII] or [33, § 1.4.6]). Thus we have
the following lemma:

Lemma 4.3.5. Let ε > 0 be given. Then there exists a constant C20 > 0
such that∫ n+1

n

|u(x1, a)|2 dx1 +

∫ n+1

n

|u(x1, 0)|2 dx1 ≤ C20

(
ERSn [u]− λ1

∫
Sn

|u(x)|2 dx
)
,

∀u ∈ W 1
2 (Sn), u ⊥ u1. (4.25)
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Proof. In this proof, we make use of (4.23) and Lemma 4.3.3. For s > 1
2
, the

trace theorem and Lemma 4.3.3 imply∫ n+1

n

|u(x1, a)|2dx1 +

∫ n+1

n

|u(x1, 0)|2dx1 ≤ Cs‖u‖X1

≤ Cs

(
ε

(∫
Sn

|∇u(x)|2dx+

∫
Sn

|u(x)|2dx
)

+ C(ε)

∫
Sn

|u(x)|2dx
)

= Csε

∫
Sn

|∇u(x)|2dx+ Cs(ε+ C(ε))

∫
Sn

|u(x)|2dx

= Csε
(
ERn [u]− λ1

∫
Sn

|u(x)|2dx− β
∫ n+1

n

|u(x1, a)|2 dx1

+α

∫ n+1

n

|u(x1, 0)|2 dx1 + λ1

∫
Sn

|u(x)|2 dx
)

+ Cs(ε+ C(ε))

∫
Sn

|u(x)|2 dx

≤ Csε

(
ERSn [u]− λ1

∫
Sn

|u(x)|2 dx
)

+Csε max{|β|, |α|}
(∫ n+1

n

|u(x1, a)|2 dx1 +

∫ n+1

n

|u(x1, 0)|2 dx1

)
+ Cs (ε(λ1 + 1) + C(ε))

∫
Sn

|u(x)|2 dx .

Take ε ≤ 1
2Cs max{|β|,|α|} . Then∫ n+1

n

|u(x1, a)|2 dx1 +

∫ n+1

n

|u(x1, 0)|2 dx1

≤ Csε

(
ERSn [u]− λ1

∫
Sn

|u(x)|2 dx
)

+
1

2

∫ n+1

n

|u(x1, a)|2 dx1

+
1

2

∫ n+1

n

|u(x1, 0)|2 dx1 + Cs (ε(λ1 + 1) + C(ε))

∫
Sn

|u(x)|2 dx.

Hence (4.23) yields∫ n+1

n

|u(x1, a)|2 dx1 +

∫ n+1

n

|u(x1, 0)|2 dx1

≤ 2Csε

(
ERSn [u]− λ1

∫
Sn

|u(x)|2 dx
)

+ 2Cs (ε(λ1 + 1) + C(ε))

∫
Sn

|u(x)|2 dx

≤ Cs

(
2ε+

2

λ2 − λ1

(ε(λ1 + 1) + C(ε))

)(
ERSn [u]− λ1

∫
Sn

|u(x)|2 dx
)

= C20

(
ERSn [u]− λ1

∫
Sn

|u(x)|2 dx
)
,
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where

C20 := Cs

(
2ε+

2

λ2 − λ1

(ε(λ1 + 1) + C(ε))

)
.

As a consequence of Lemma 4.3.5 and (4.23) we have the following Lemma

Lemma 4.3.6. There exists a constant C21 > 0 such that∫
Sn

|∇u(x)|2 dx ≤ C21

(
ERSn [u]− λ1

∫
Sn

|u(x)|2 dx
)
, ∀u ∈ W 1

2 (Sn), u ⊥ u1.

(4.26)

Proof.∫
Sn

|∇u(x)|2 dx = ERSn [u]− λ1

∫
Sn

|u(x)|2 dx+ λ1

∫
Sn

|u(x)|2 dx

− β

∫ n+1

n

|u(x1, a)|2 dx1 + α

∫ n+1

n

|u(x1, 0)|2 dx1

≤ (1 + C20 max{|α|, |β|})
(
ERSn [u]− λ1

∫
Sn

|u(x)|2 dx
)

+ λ1

∫
Sn

|u(x)|2 dx

≤ (1 + C20 max{|α|, |β|})
(
ERSn [u]− λ1

∫
Sn

|u(x)|2 dx
)

+
max{0, λ1}
λ2 − λ1

(
ERSn [u]− λ1

∫
Sn

|u(x)|2 dx
)

=

(
1 + C20 max{|α|, |β|}+

max{0, λ1}
λ2 − λ1

)(
ERSn [u]− λ1

∫
Sn

|u(x)|2 dx
)

= C21

(
ERSn [u]− λ1

∫
Sn

|u(x)|2 dx
)
,

where

C21 := 1 + C20 max{|α|, |β|}+
max{0, λ1}
λ2 − λ1

.

Let H1 := PW 1
2 (S) and H2 := (I − P )W 1

2 (S), where

Pu(x) :=

(∫ a

0

u(x)u1(x2) dx2

)
u1(x2) = w(x1)u1(x2) , ∀u ∈ W 1

2 (S)

(4.27)
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and

w(x1) :=

∫ a

0

u(x)u1(x2) dx2 .

Then P is a projection since P 2 = P .

Lemma 4.3.7. For all u ∈ W 1
2 (S), 〈(I − P )u, u1〉L2[0,a] = 0.

Proof. Since Pu = 〈u, u1〉L2[0,a]u1, then

〈(I − P )u, u1〉L2[0,a] = 〈u− 〈u, u1〉L2[0,a]u1, u1〉L2[0,a]

= 〈u, u1〉L2[0,a] − 〈u, u1〉L2[0,a]〈u1, u1〉L2[0,a]

= 〈u, u1〉L2[0,a] − 〈u, u1〉L2[0,a] = 0.

Lemma 4.3.8. For all v ∈ H1, ṽ ∈ H2, 〈v, ṽ〉L2(S) = 0 and
〈vx1 , ṽx1〉L2(S) = 0.

Proof.

〈ṽ, v〉L2(S) =

∫
S

(I − P )u(x).w(x1)u1(x2) dx

=

∫
R
w(x1)

(∫ a

0

u(x)u1(x2) dx2

)
dx1

−
∫
R
w(x1)

[(∫ a

0

uu1(x2) dx2

)(∫ a

0

u1(x2)u1(x2) dx2

)]
dx1

=

∫
R
w(x1)

(∫ a

0

u(x)u1(x2) dx2

)
dx1

−
∫
R
w(x1)

[(∫ a

0

u(x)u1(x2) dx2

)
‖u1‖2

]
dx1

=

∫
R
w(x1)

(∫ a

0

u(x)u1(x2) dx2

)
dx1

−
∫
R
w(x1)

(∫ a

0

u(x)u1(x2) dx2

)
dx1 = 0.

Since for all v ∈ H1 and ṽ ∈ H2, vx1 ∈ PL2(S), ṽx1 ∈ (I − P )L2(S), it
follows that

〈vx1 , ṽx1〉L2(S) = 0.
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Lemma 4.3.9. Let

ERS [u] :=

∫
S

|∇u(x)|2 dx+β

∫
R
|u(x1, a)|2 dx1−α

∫
R
|u(x1, 0)|2 dx1, ∀u ∈ W 1

2 (S).

Then
ERS [u] = ERS [v] + ERS [ṽ], ∀u = v + ṽ, v ∈ H1 , ṽ ∈ H2 .

Proof.

〈ṽx2 , vx2〉L2(S) =

∫
S

∂

∂x2

(I − P )u(x)
∂

∂x2

(w(x1)u1(x2))dx

=

∫
R
w(x1)

[∫ a

0

∂

∂x2

(I − P )u(x)
∂

∂x2

(u1(x2)) dx2

]
dx1.

Integration by parts and Lemma 4.3.7 give

〈vx2 , ṽx2〉L2(S) =

∫
R
w(x1)(I − P )u(x1, a)

∂

∂x2

u1(a) dx1

−
∫
R
w(x1)(I − P )u(x1, 0)

∂

∂x2

u1(0) dx1

+

∫
R
w(x1)

λ1

∫ a

0

(I − P )u(x)u1(x2) dx2︸ ︷︷ ︸
=0

 dx1

= −β
∫
R
w(x1)(I − P )u(x1, a)u1(a)dx1

+ α

∫
R
w(x1)(I − P )u(x1, 0)u1(0)dx1.

Thus, this together with Lemma 4.3.8 yield

ERS (ṽ, v) =

∫
S

∇ṽ∇v dx+ β

∫
R
w(x1)(I − P )u(x1, a)u1(a)dx1

− α

∫
R
w(x1)(I − P )u(x1, 0)u1(0)dx1

= −β
∫
R
w(x1)(I − P )u(x1, a)u1(a)dx1

+ α

∫
R
w(x1)(I − P )u(x1, 0)u1(0)dx1

+ β

∫
R
w(x1)(I − P )u(x1, a)u1(a)dx1

− α

∫
R
w(x1)(I − P )u(x1, 0)u1(0)dx1 = 0.
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This means that for all u ∈ W 1
2 (S)

ERS [u] = ERS [v] + ERS [ṽ], ∀u = v + ṽ, v ∈ H1, ṽ ∈ H2.

Hence
W 1

2 (S) = H1 ⊕H2 ,

where ⊕ denotes the direct orthogonal sum.

Proof of Theorem 4.3.2. Let

ERS [u] :=

∫
S

|∇u(x)|2 dx− α
∫
R
|u(x1, 0)|2 dx1 + β

∫
R
|u(x1, a)|2 dx1,

Dom(ERS ) = W 1
2 (S).

and

ERλ1,V µ,S[u] := ERS [u]− λ1

∫
S

|u(x)|2 dx−
∫
S

V (x)|u(x)|2 dµ(x),

Dom(ERλ1,V µ,S) = W 1
2 (S) ∩ L2 (S, V dµ) .

Then similarly to (4.2) one has

N−
(
ERλ1,V µ,S

)
≤ N−(E1,2V ) +N−(E2,2V ) (4.28)

where E1,2V and E2,2V are the restrictions of the form ERλ1,2V µ,S to the spaces
H1 and H2 respectively. We start by estimating the first term in the right-
hand side of (4.28).

Recall that for all u ∈ H1 , u(x) = w(x1)u1(x2) (see (4.27)). Let I be
an arbitrary interval in R and let

ν(I) :=

∫
I

∫ a

0

V (x)|u1(x2)|2 dµ(x).

Then ∫
S

V (x)|u(x)|2 dµ(x) =
∑
k∈Z

∫
Ik

∫ a

0

V (x)|w(x1)u1(x2)|2 dµ(x)

=
∑
k∈Z

∫
Ik

|w(x1)|2 dν(x1)

=

∫
R
|w(x1)|2 dν(x1).
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On the subspace H1, one has∫
S

(
| ∇u(x) |2 −λ1 | u(x) |2

)
dx+ β

∫
R
| u(x1, a) |2 dx1

−α
∫
R
| u(x1, 0) |2 dx1 − 2

∫
S

V (x) | u(x) |2 dµ(x)

=

∫
R
| w′(x1) |2

(∫ a

0

| u1(x2) |2 dx2

)
dx1

+

∫
R
| w(x1) |2

(∫ a

0

| u′1(x2) |2 dx2

)
dx1

−λ1

∫
R
| w(x1) |2

(∫ a

0

| u1(x2) |2 dx2

)
dx1

+β

∫
R
| w(x1)u1(a) |2 dx1 − α

∫
R
| w(x1)u1(0) |2 dx1

−2

∫
R
|w(x1)|2 dν(x1).

But ∫
R
| w(x1) |2

(∫ a

0

| u′1(x2) |2 dx2

)
dx1

= λ1

∫
R
| w(x1) |2

(∫ a

0

| u1(x2) |2 dx2

)
dx1

−β
∫
R
| w(x1)u1(a) |2 dx1 + α

∫
R
| w(x1)u1(0) |2 dx1,

which implies∫
S

(
| ∇u(x) |2 −λ1 | u(x) |2

)
dx+ β

∫
R
| u(x1, a) |2 dx1

−α
∫
R
| u(x1, 0) |2 dx1 − 2

∫
S

V (x) | u(x) |2 dx

= ‖u1‖2

∫
R
| w′(x1) |2 dx1 −

∫
R
|w(x1)|2 dν(x1)

=

∫
R
| w′(x1) |2 dx1 − 2

∫
R
|w(x1)|2 dν(x1). (4.29)

Hence, we have the following one dimensional Schrödinger operator

− d2

dx2
1

− 2ν on L2(R) .
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Let

E1,2ν [w] :=

∫
R
|w′(x1)|2 dx1 − 2

∫
R
|w(x1)|2 dν(x1),

Dom(E1,2ν) = W 1
2 (R) ∩ L2 (R, dν) ,

Fn :=

∫
In

|x1| dν(x1), n 6= 0,

F0 :=

∫
I0

dν(x1).

Then
N− (E1,2ν) ≤ 1 + 7.16

∑
{Fn>0.046, n∈Z}

√
Fn (4.30)

(see (2.42)). To write the above estimate in terms of the original measure,
let

Fn :=

∫
In

∫ a

0

|x1|V (x)|u1(x2)|2 dµ(x), n 6= 0,

F0 :=

∫
I0

∫ a

0

V (x)|u1(x2)|2 dµ(x).

Then Fn = Fn. Hence

N− (E1,2V ) ≤ 1 + 7.16
∑

{Fn>0.046, n∈Z}

√
Fn . (4.31)

Next, we consider the subspace H2 ⊥ H1 in W 1
2 (S). By (4.23) and (4.26),

one has

‖u‖2
W 1

2 (Sn) ≤
(

1

λ2 − λ1

+ C21

)(
ERSn [u]− λ1

∫
Sn

|u(x)|2dx
)

(4.32)

for all u ∈ W 1
2 (Sn), u ⊥ u1.

Let Sn := (n, n+ 1)× (0, a), n ∈ Z be the set G in Lemma 3.2.13 and S∗n be
defined similarly. For each n, S∗n intersects not more than N0 rectangles to
the left of Sn and N0 rectangles to right of Sn, where N0 ∈ N depends only
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on a and θ0 in Corollary 3.1.2. Then (4.20) implies

µ(S∗n) ≤
n+N0∑
j=n−N0

µ(Sj)

= µ(Sn−N0) + ...+ µ(Sn−1) + µ(Sn) + µ(Sn+1) + ...+ µ(Sn+N0)

≤
(

1

cN0
2

+ ...+
1

c2

)
µ(Sn) + µ(Sn) +

(
1

c2

+ ...+
1

cN0
2

)
µ(Sn)

=

(
2

(
1

c2

+ ...+
1

cN0
2

)
+ 1

)
µ(Sn)

= κ0µ(Sn) ,

where

κ0 := 2

(
1

c2

+ ...+
1

cN0
2

)
+ 1 .

Let
T : W 1

2 (Sn) −→ W 1
2 (R2)

be a bounded linear operator which satisfies

Tu|Sn = u ∀u ∈ W 1
2 (Sn) .

Then it follows from the proof of Lemma 3.2.13 that for any V ∈ LB(Sn, µ), V ≥
0 and any n ∈ N∫

Sn

V (x)|u(x)|2dµ(x) ≤ C6
c1

c0

2ακ0N
2n−1‖T‖2‖V ‖B,Sn,µ‖u‖2

W 1
2 (Sn)

for all u ∈ W 1
2 (Sn) ∩ C(Sn) satisfying the n0 orthogonality conditions in

Lemma 3.2.13. Hence (4.32) implies∫
Sn

V (x)|u(x)|2dµ(x) ≤ C22n
−1‖V ‖B,Sn,µ

(
ERSn [u]− λ1

∫
Sn

|u(x)|2dx
)
(4.33)

for all u ∈ W 1
2 (Sn)∩C(Sn), u ⊥ u1 satisfying the n0 orthogonality conditions,

where

C22 := C6
c1

c0

2ακ0N
2‖T‖2

(
1

λ2 − λ1

+ C21

)
.

Let

E2,2V µ,Sn [u] := ERSn [u]− λ1

∫
Sn

|u(x)|2 dx− 2

∫
Sn

V (x)|u(x)|2 dµ(x),

Dom(E2,2V µ,Sn) = W 1
2 (Sn) ∩ L2 (Sn, V dµ) (see(4.22)). (4.34)
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Taking n = [‖V ‖B,Sn,µ] + 1 in (4.33), one gets similarly to Lemma 3.2.14

N− (E2,2V µ,Sn) ≤ C23‖V ‖B,Sn,µ + 2, ∀V ≥ 0 (4.35)

where C23 := 2C22 . Again, taking n = 1 in (4.33), we get

2

∫
Sn

V (x)|u(x)|2 dµ(x) ≤ C23‖V ‖B,Sn,µ
(
ERSn [u]− λ1

∫
Sn

|u(x)|2dx
)
,

for all u ∈ W 1
2 (Sn)∩C(Sn), u ⊥ u1 satisfying the n0 orthogonality conditions.

If ‖V ‖B,Sn,µ ≤ 1
C23

, then
N− (E2,2V µ,Sn) = 0 .

Otherwise, (4.35) implies

N− (E2,2V µ,Sn) ≤ C24‖V ‖B,Sn,µ ,

where C24 := 3C23.

Let Mn = ‖V ‖B,Sn,µ. Then for any c ≤ 1
C23

, the variational principle (see
(1.67)) implies

N− (E2,2V ) ≤ C24

∑
{Mn> c, n∈Z}

Mn, ∀V ≥ 0 . (4.36)

Thus (4.28), (4.31) and (4.36) imply (4.21).

The presence of the terms
√
Fn and Mn in the estimate indicate that different

parts of the potential contribute differently to number the N−(ERλ1,V,S). Since

for the terms
√
Fn, V is integrated over long rectangles, then the long range

effect of V in the x1-direction becomes similar to that of one-dimensional
potential.

Theorem 4.3.10. (cf. Theorem 3.2.18) Let V ≥ 0. If N−
(
ERλ1,γV µ,S

)
=

O(γ) as γ −→ +∞, then ‖Fn‖1,w <∞.

Proof. For σ > 0, consider the function

wn(x1) :=



0, |x1| ≤ 2n−1 or |x1| ≥ 2n+2,

2(σ−1)(n+1)(x1 − 2n−1), 2n−1 < |x1| < 2n,

xσ1 , 2n ≤ |x1| ≤ 2n+1,

2(σ−1)(n+1)(2n+2 − x1), 2n+1 < |x1| < 2n+2 .
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Let un(x) = wn(x1)u1(x2). Then by a computation similar to the one leading
to (4.29) we get

ERS [un] − λ1

∫
S

|un(x)|2 dx =

∫
S

(
|∇un(x)|2 − λ1|un(x)|2

)
dx

− α

∫
R
|un(x1, 0)|2dx1 + β

∫
R
|un(x1, a)|2dx1 =

∫
R
|w′n(x1)|2dx1

=

∫ 2n

2n−1

|w′n(x1)|2dx1 +

∫ 2n+1

2n
|w′n(x1)|2dx1 +

∫ 2n+2

2n+1

|w′n(x1)|2dx1

= 2(2σ−1)n

(
2 +

σ222σ−1

2σ − 1
+ 22σ−1

)
= C252(2σ−1)n ,

where

C25 :=

(
2 +

σ222σ−1

2σ − 1
+ 22σ−1

)
, σ 6= 1

2
.

Now ∫
S

V (x)|un(x)|2 dµ(x) ≥
∫ 2n+1

2n
x2σ

1

∫ a

0

V (x)|u1(x2)|2 dµ(x)

=

∫ 2n+1

2n
x2σ−1

1 |x1|
∫ a

0

V (x)|u1(x2)|2 dµ(x)

≥ 2(2σ−1)nFn

=
1

C25

(
ERS [vn]− λ1

∫
S

|vn(x)|2 dx
)
Fn .

Hence ERλ1,V µ,S[un] < 0 if Fn > C25. The fact that un and uk have disjoint
supports if |m− k| ≥ 3 implies that

N−
(
ERλ1,V µ,S

)
≥ 1

3
card{n ∈ Z : Fn > C25}

(see [43, Theorem 9.1]). If N−
(
ERλ1,γV µ,S

)
≤ Cγ, then

1

3
card{n ∈ Z : γFn > C25} ≤ Cγ ,

which implies

card

{
n ∈ Z : Fn >

C25

γ

}
≤ 3Cγ .

With s = C25

γ
we have

card{n ∈ Z : Fn > s} ≤ C26s
−1, s > 0,

where C26 := 3C25C.
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Now, suppose that µ = | · |, the Lebesgue measure . Then

Fn =

∫
In

|x1|
(∫ a

0

V (x)|u1(x2)|2dx2

)
dx1, n 6= 0,

F0 =

∫
I0

(∫ a

0

V (x)|u1(x2)|2dx2

)
dx1.

Let Jn := (n, n+ 1), I := (0, a) and

Dn := ‖V ‖L1(Jn,LB(I)) ,

(see (2.17)). Then one has the following better estimate

N−
(
ERλ1,V,S

)
≤ 1 + 7.16

∑
{Fn> 0.046, n∈Z}

√
Fn + C27

∑
{Dn> c, n∈Z}

Dn, ∀V ≥ 0 .

(4.37)
Indeed, suppose that ‖ V ‖B,Sn,|·|= 1, similarly to (4.9) one has

Dn =

∫
Jn

‖V ‖B,I dx1 ≤ 4‖V ‖B,Sn,|·| = 4Mn . (4.38)

The scaling V 7−→ tV, t > 0, allows one to extend the above inequality to
an arbitrary V ≥ 0. By the same procedure leading to estimate (4.14) one
has the following estimate

N−(ERλ1,V,S) ≤ 1 + C28

(
‖ (Fn)n∈Z ‖1,w +‖V∗‖L1(R,LB(I))

)
, ∀V ≥ 0. (4.39)

where V∗ := V (x)−G(x1) and

G(x1) :=

∫ a

0

V (x)|u1(x2)|2 dx2 .

The condition ‖Fn‖1,w <∞ is necessary and sufficient for the semi-classical
behaviour of the estimate coming from the subspace H1 (see the above The-
orem). Roughly speaking, the terms Fn are responsible for the negative
eigenvalues of Hλ1,V in the x1-direction. In addition, if V∗ ∈ L1 (R, LB(I)),
then one gets an analogue of Theorem 1.1 in [31], i.e.,

N−(ERλ1,γV,S) = O(γ) as γ −→ +∞

if and only if Fn ∈ l1,w.
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Remark 4.3.11. When α = 0 (α −→ ±∞) we have Neumann- Robin
(Dirichlet-Robin respectively) boundary conditions.
If α, β −→ ±∞, we obtain Dirichlet boundary conditions. In this case,

λ1 =
(
π
a

)2
, λ2 = min

{
4
(
π
a

)2
,
(
π
a

)2
+ π2

}
and u1(x2) =

√
2
a

sin π
a
x2.

If α −→ ∞, β = 0, we obtain Dirichlet-Neumann boundary conditions.

In this case, λ1 =
(
π
2a

)2
, λ2 = min

{
9
(
π
2a

)2
,
(
π
2a

)2
+ π2

}
and u1(x2) =√

2
a

sin π
2a
x2.
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Chapter 5

Appendices

5.1 Besecovitch covering Lemma

Let A be a bounded set in Rn and Ξ denote a covering of A by cubes ∆ ⊂ Rn.
Suppose Ξ can be split into r subsets Ξ1, ...,Ξr in such a way that for each
k = 1, ..., r, the cubes ∆ ∈ Ξk are pairwise disjoint. The smallest number r
for which such a split of Ξ is possible is called the linkage of Ξ and we denote
it by link (Ξ).

Lemma 5.1.1. [20, Theorem 1.1] Let ∆x ⊂ Rn be a closed cube centred
at x for any x ∈ A. Then a finite or countable subset Ξ = {∆xj} can be

chosen in such a way that A ⊂ ∪
j
∆xj and link (Ξ) ≤ N , where N is a

number depending only on the dimension n. For n = 2, the optimal bound
for link (Ξ) is 19 (see, e.g., [36, Theorem 2.7]).

5.2 The classical Poincaré inequality

For reference, see, e.g.,[33, 1.1.11] and the references therein. Assume that
1 ≤ p <∞ and that Ω is a bounded connected domain in Rn with a Lipschitz
boundary. Then there is a constant C, depending only on Ω and p such that
for all u ∈ W 1

p (Ω)
‖u− uΩ‖Lp(Ω) ≤ C‖∇u‖Lp(Ω) ,

where uΩ := 1
|Ω|

∫
Ω
u(x) dx is the average value of u over Ω.
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5.3 Proofs of (3.23), (3.24) and (3.25)

Let B(s) = (1 + s) ln(1 + s)− s = 1
t
, then s = B−1

(
1
t

)
. For small values of s

(large values of t), using

ln(1 + s) = s− s2

2
+
s3

3
+O

(
s4
)
,

we have

(1 + s) ln(1 + s)− s =
s2

2
+O

(
s3
)

=
1

t
.

One can write this in the form

s2

2
+ s2g(s) =

1

t
, g(0) = 0,

s2

2
(1 + 2g(s)) =

1

t
,

s (1 + h(s)) =

√
2

t
, h(0) = 0,

where g and h are C∞ smooth functions in a neighbourhood of 0. Let f(s) =
s (1 + h(s)). Then f(0) = 0, f ′(0) = 1 and (f−1)′(0) = 1, which means that
both f and f−1 are invertible in a neighbourhood of 0. So by Taylor series
we have

s = f−1

(√
2

t

)
=

√
2

t
+O

(
1

t

)
.

Thus

B−1

(
1

t

)
=

√
2

t
(1 + o(1)) as t −→∞

and

tB−1

(
1

t

)
=
√

2t (1 + o(1)) as t −→∞.

For large values of s (small values of t), let ρ = 1 + s and r = 1
t
, then

ρ ln ρ− ρ+ 1 = r.

Let ρ = ez, then
zez − r − ez + 1 = 0. (5.1)

This implies

(z − 1)ez = r − 1,

(z − 1)ez−1 =
r − 1

e
.
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Let w := z − 1 v := r−1
e

. Then

wew = v. (5.2)

The solution of (5.2) is given by

w = ln v − ln ln v +
ln ln v

ln v
+O

((
ln ln v

ln v

)2
)

(see (2.4.10) and the formula following (2.4.3) in [10]). So

z = 1 + ln
r − 1

e
− ln ln

r − 1

e
+

ln ln r−1
e

ln r−1
e

+O

((
ln ln r−1

e

ln r−1
e

)2
)
.

Since

ln(r − 1) = ln r +O

(
1

r

)
,

ln (ln(r − 1)− 1) = ln ln r +O

(
1

ln r

)
,

we get

z = ln r − ln ln r +
ln ln r

ln r
+O

(
1

ln r

)
= ln

1

t
− ln ln

1

t
+

ln ln 1
t

ln 1
t

+O

(
1

ln 1
t

)
.

This implies

ρ = ez =
1

t ln 1
t

(
1 +

ln ln 1
t

ln 1
t

+O

(
1

ln 1
t

))
.

Hence

tB−1

(
1

t

)
=

1

ln 1
t

(
1 +

ln ln 1
t

ln 1
t

+O

(
1

ln 1
t

))
implying

tB−1

(
1

t

)
=

1

ln 1
t

(1 + o(1)) as t −→ 0.
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Let
1

ln 1
t

(1 + o(1)) = τ,

then

ln
1

t
=

1 + o(1)

τ
. (5.3)

From
1

ln 1
t

(
1 +

ln ln 1
t

ln 1
t

+O

(
1

ln 1
t

))
= τ,

we get

ln
1

t
=

1 +
ln ln 1

t

ln 1
t

+O
(

1
ln 1

t

)
τ

. (5.4)

Now (5.3) implies

ln
1

t
=

1 +
ln

1+o(1)
τ

1+o(1)
τ +O

(
τ

1+o(1)

)
τ

=
1 + (1 + o(1))τ ln 1

τ
+O(τ)

τ
.

Substituting this into (5.4), one gets

ln
1

t
=

1 +
ln

1+(1+o(1))τ ln 1
τ +O(τ)

τ

1+(1+o(1))τ ln 1
τ

+O(τ)
τ +O(τ)

τ

=
1

τ
− ln τ +O(1).

Hence
t = τe−

1
τ eO(1) =: ϕ(τ). (5.5)

5.4 An analogue of Lemma 3.2.10

Let ∆ := I1 × I2 be a rectangle of sides of lengths R1 and R2 respectively
and ∆∗ the rectangle with the same centre as ∆ and with sides of lengths 3
times those of ∆. Let

‖V ‖(∗)
Ψ,∆,µ := sup

{∣∣∣∣∫
∆

V u dµ

∣∣∣∣ :

∫
∆

Φ(|u|) dµ ≤ µ(∆∗)

}
. (5.6)

Then we have the following Lemma.
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Lemma 5.4.1. Let µ be a σ-finite positive Radon measure that is Ahlfors
regular. Then for any V ∈ LΨ(∆, µ), V ≥ 0, there is a constant d1 > 0 such
that ∫

∆

V (x)|w(x)|2dµ(x) ≤ d1‖V ‖(∗)
Ψ,∆,µ

∫
∆

|∇w(x)|2dx (5.7)

for all w ∈ W 1
2 (∆) ∩ C(∆) with w∆ = 0.

Proof. If suppµ∩∆ = ∅, the left-hand side of (5.7) is 0 and there is nothing
to prove. Suppose that suppµ ∩∆ 6= ∅. Then ∀x ∈ supp µ ∩∆, there exists
a rectangle ∆o centred at x with sides of lengths twice those of ∆ such that
∆ ⊆ ∆o ⊆ ∆∗. Let w∗ be the extension of w outside ∆. Then similarly to
(3.37) there is a constant d2 > 0 such that∫

∆o

|∇w∗(x)|2 dx ≤ d2

∫
∆

|∇w(x)|2 dx .

Let V∗ be the extension by 0 of V outside ∆. Then Lemma 1.3.10 and Lemma
3.2.10 imply∫

∆

V (x)|w(x)|2dµ(x) =

∫
∆o

V∗(x)|w(x)|2dµ(x)

≤ A2
c1

c0

2α max

{
R1

R2

,
R1

R2

}α+1

‖V∗‖(av)
Ψ,∆o,µ

∫
∆o

|∇w∗(x)|2dx

≤ A2
c1

c0

2α max

{
R1

R2

,
R1

R2

}α+1

d2‖V ‖(∗)
Ψ,∆,µ

∫
∆

|∇w(x)|2dx

= d1‖V ‖(∗)
Ψ,∆,µ

∫
∆

|∇w(x)|2dx ,

where

d1 := A2d2
c1

c0

2α max

{
R1

R2

,
R1

R2

}α+1

.

One would ask whether norm (5.6) is superadditive, i.e. whether (1.21) holds
with ‖ · ‖(∗) in place of ‖ · ‖(av), which is an important property used in the
proof of Lemma 3.2.13. It follows from Lemma 1.3.9 that if pairwise disjoint
subsets Ωk of Ω satisfy the condition∑

k

µ(Ω∗k) ≤ κµ(Ω∗) (5.8)

with some κ > 0, then ∑
k

‖V ‖(∗)
Ψ,Ωk,µ

≤ κ ‖V ‖(∗)
Ψ,Ω,µ .
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Let ∆1, ...,∆N ⊆ supp µ ∩∆ be pairwise disjoint squares of sides of length
lk, k = 1, ..., N centered in the support of µ. Then ∆∗k , k = 1, ..., N are also
centred in the support of µ. Let us show that (5.8) holds in this case. By
(3.7) one has

µ(∆∗k) ≤ c1

(
3√
2

)α
lαk

and

µ(∆k) ≥ c0

(
1

2

)α
lαk .

This implies

µ(∆∗k) ≤
c1

c0

(3
√

2)αµ(∆k).

Hence

N∑
k=1

µ(∆∗k) ≤
c1

c0

(3
√

2)α
N∑
k=1

µ(∆k)

≤ c1

c0

(3
√

2)αµ(∆)

= κµ(∆) ≤ κµ(∆∗) <∞,

where κ := c1
c0

(3
√

2)α .

Note that if ∆k’s are not centred in the support of µ, then (5.8) may fail.
Indeed, consider the standard ternary Cantor set

C = [0, 1] \
∞⋃
n=1

2n−1⋃
j=1

In,j ,

where In,j’s are the “middle third” intervals of the length 1
3n

. Let µ be the
Hausdorff measure of dimension α = ln 2

ln 3
supported by C. Let ∆n,j be the

closed square with the middle line In,j and ∆ be the closed square with the
middle line [0, 1]. It is clear that ∆n,j’s are pairwise disjoint and

∞⋃
n=1

2n−1⋃
j=1

∆n,j ⊂ ∆.

On the other hand,

C ⊂
2n−1⋃
j=1

∆∗n,j , ∀n ∈ N.
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Hence
∞∑
n=1

2n−1∑
j=1

µ(∆∗n,j) ≥
∞∑
n=1

µ(C) =∞,

while
µ(∆∗) = µ(C) <∞.
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