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On estimates for the number of negative
eigenvalues of two-dimensional Schrodinger
operators with potentials supported by
Lipschitz curves

Martin Karuhanga*

Abstract

In this paper we present quantitative upper estimates for the num-
ber of negative eigenvalues of a two-dimensional Schrédinger operator
with potential supported by an unbounded Lipschitz curve. The esti-
mates are given in terms of weighted L' and Llog L type Orlicz norms
of the potential.

Keywords: Negative eigenvalues; Schrodinger operators; Lipschitz curves.

1 Introduction

According to the celebrated Cwikel-Lieb-Rozenblum inequality [2, 16], the
number N_(V') of negative eigenvalues of the Schrodinger operator —A —
V,V >0on L?*(R%), d > 3 is estimated above by

const / V(x)%dx.
Rd

It is well known that this estimate does not hold for d = 2. One of the reasons
for this is that the Sobolev space H'(R?) is not continuously embedded in
L>(R?). However, it was shown in [9] that the Cwikel-Lieb-Rozenblum in-
equality gives a lower estimate in two dimensions. The strongest known esti-
mates for the number of negative eigenvalues of a two-dimensional Schrédinger
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operator involve weighted L' norms and L log L type Orlicz norms of the po-
tential (see, e.g., [18, 19]). In the case of compactly supported potentials,
one does not need to use weighted L' norms of the potential. Similar esti-
mates involving only L log L Orlicz norms of the potential were obtained in
[17] for two-dimensional Schrédinger operators with potentials supported by
bounded Lipschitz curves. The estimates obtained in [17] are extended in
the present paper to the case of potentials supported by unbounded Lips-
chitz curves. This extension is by no means straightforward as one needs to
introduce weighted L' norms of the potential into the estimates. More upper
estimates for N_(V') in the case d = 2 can be found in [4, 6, 7, 8, 13, 18, 19|
and the references therein.

We study the operator
Hy =-A-V, V>0 (1)

on L*(R?), where V is a real valued function supported by and locally inte-
grable on an unbounded Lipschitz curve.

2 Notation and auxilliary material

In this section we present the basic theory of Orlicz spaces that we use in
the sequel (more details can be found for example in [1, 12] and [15]).

Let (£2,%, u) be a measure space and let ¥ : [0, +00) — [0, +00) be a non-

decreasing function. We define a Banach space of functions f : Q@ — C (or
R) such that

| wr@iduto) < o 2)

If W(t) = t?, then this is just LP(£2). If U is rapidly increasing, e.g exponen-
tially increasing, the set of all functions satisfying (2) is not a linear space
as (2) does not imply that the same for 2f is finite.

Definition 2.1. A continuous convex non-decreasing function ¥ : [0, +00) —
[0, 4+00) is called an N-function if
lim —= =0 and lim —* =400

The function ® : [0,4+00) — [0, +00) defined by
®(t) :=sup (st — ¥(s))

s>0

is called complementary to W.



Let ® and ¥ be mutually complementary N-functions. We will use the
following norms:

||f||@,9=sup{’ / fgdu\: [ a1} 3)
ey = int {05 [ ()<}, (1)

The Orlicz space which we denote by Ly(€2) is defined as follows

and

Ly(Q) == {f | lfllw.o < o0}. (5)
The above two norms are equivalent
/1l wo, V)€ L), (6)
(see [1]).
Note that
Q 0

Indeed, since ¥ is convex and increasing on [0, +00), and ¥(0) = 0, we get
for any k > Cyky,

f /] /]
L“(?)d“ﬁ/g‘y(m) i< [ v ()d <L @
It follows from (7) with o = 1 that
Wl < max{ / (Ifl)dﬂ} (9)
Q

We will also need the following equivalent norm on Ly (§2) with p(Q2) < oo
which was introduced in [19]:

115 = {] / fgd/t‘ [otaban<ue}. o

||fr|<a“—sup{] / fgdu‘r [ tabau< @}, 70

By mimicking the proof of Lemma 2.1 in [18], one can show that for any
T1, Tg > 0

. av),T av),T: T2 av),T
win {1, 2 L1710 < 17060 < max {1, 271607 a2

Let
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Lemma 2.2. Let €, £ = 1,...,n be pairwise disjoint measurable subsets of
Q) such that LkJQk C Q). Then

Z 1£15a, < 115

Let G, Gy, k =1, ...,n be measurable sets such that G C %{JG;{. Then

17150 < /azufn;&, (13)

where

_ 1(G)
7= {1 s 2L

Proof. The first statement can be found in [19, Lemma 2]. Now

T sup{

¢ gdﬂ\i /G ‘D(Igl)duéu(e)}
{Z /mk fgdﬂ‘: /G ‘D(\g\)duéu(G)}

/Gk fgdu‘ : /G B (|gl)dps < ﬁu(Gw}

ann&j”ak
ﬁannM

(by (12)). 0

IN
w
=1
T

[\
T
0]
=
—N—

IN

IN

We will use the following pair of mutually complementary N-functions

A(s) = eldl —1 — Is|, B(s)=(1+|s])In(1+]s])—1s|, seR. (14)

3 Lipschitz curves

Definition 3.1. A mapping F' from a metric space (Xi,d;) into a metric
space (Xy,ds) is said to bi-Lipschitz if there exists a constant L > 0 such
that

di(z,y)/L < do(F(x), F(y)) < Ldy(z,y), Vz,ye X;.

4



Let ¢ be a curve in C. We say that ¢ is a Lipschitz arc if it is a bi-Liptschitz
image of [0, 1].

It is clear that a Lipschitz arc is non-self intersecting and rectifiable (has
finite length). Using arc length parametrization, one is able to see that a
simple rectifiable curve ¢ is a Lipschitz arc if and only if it is a chord-arc
curve, that is, there exists a constant K > 1 such that the length of the sub-
arc of ¢ joining any two points is bounded by K times the distance between
them. When dealing with function spaces on ¢, we will always assume that
¢ is equipped with the arc length measure.

Let I be an unbounded curve in R? and F : R — R? be a bi-Lipschitz
mapping such that F(R) = I". Then F' can be extended to a bi-Lipschitz
homeomorphism F : R? — R? (see [11, Proposition 1.13]). Below we iden-
tify R? with C. Let & € C\ R. Then one has

1
In(1+ |z — 29]) ———=ds(z
[ m1+1z = 2 =)

:/Rln(1+|F(§)—F(§o>|) :

[F(§) — F(&)[?
Ld¢

€ — &of?/L?

d§

E—&p =

Lemma 3.2. Let zp € C\ T be fixed and let

dF(g)

sémm+LM—@D

=Liému+Lm—@n (15)

£(z) = L , 2€C\ {2} (16)

Z— 20

Then T := £(I") U {0} is a closed Lipschitz curve, i.e. a bi-Liptschitz image
of the unit circle.

Proof. Let T:={Ce€ C: |(|=1} and

B (w(C) =20

Thgﬂ 6(1“)1 = §(F(R)) = §(F(w(T\ {-1}))) = Fo(T\ {-1}) and Fo(¢) = 0
as ( — —1L.



There exists wy € C\ R such that zg = F(wy). For any (1, € T\ {—1}, we
have

Fo(G) — Fo(Ge) = -

= 17
(PG — Flwo) (FlG) — Fl)
Now
G -Gl 1 _ ) —
P = Hlela) —w(Q)] < IF@(G) — (@)
o el
< Lu(@) —wl@)] =22 S
and
jliwe + 1) + (1w — 1 1
i =Dl 2ot = wal < IF(() = Fla)
N G lwe +1) 4+ (fwe = 1)
Since wy ¢ R, we have
M = max ¢ (iwo + 1) + (iwp — 1)] < +oo,
m = répel% ¢ (iwo + 1) + (1wy — 1)| > 0.
It now follows from (17), (18) and (19) that
2|¢1 — 213
‘213M§2| < [Fo(C) = FolG)l = 161 = G-
Hence Fy : T\{—1} — &(T) is bi-Lipschitz and can be extended by continuity
to a bi-Lipschitz mapping from T onto I. O

4 Estimates for the number of negative eigen-
values

Let H be a Hilbert space and let q be a Hermitian form with a domain
Dom (q) C H. Set

N_(q) :=sup{dim L| q[u] < 0, Vu € L\ {0}}, (20)

6



where £ denotes a linear subspace of Dom (q). If q is the quadratic form of a
self-adjoint operator A with no essential spectrum in (—oo,0), then, N_(q)
is the number of negative eigenvalues of A repeated according to their mul-
tiplicity (see, e.g., [3, S1.3] or [5, Theorem 10.2.3]).

Let ¢ be a Lipschitz arc in R?. Denote by N_(V) the number of negative
eigenvalues counting multiplicities of a two dimensional Schrédinger operator
with potential V' supported by /.

Theorem 4.1. [17, Theorem 3.1] Let V' € Lg(¢) (see (5) and (14)). Then
there exists a constant C'(¢) > 0 such that

N_(V) <COIVse+1, VYV eLg(l), V=0 (21)

Below, I and T are as defined in §3 and W; (R?) denotes the standard Sobolev
space H'(R?). Let V € L} (') and define the operator (1) via its quadratic
form by

/ V(2 dz — / V()w(z)P ds(2),
Dom(qy) = Wy (R*) N L* T,V ds).

We shall denote by N_(gy) the number of negative eigenvalues of (1) counting
multiplicities.

Theorem 4.2. Let zp € C\ I' such that inﬂz — zo| > 1. Then for all
zE
V e Lg(I'), V > 0, there exists a constant C1(I') > 0 such that

N-(gv) < Cu(T) (nvnm + [vEmas - zo|>ds<z>) L@

Proof. Let w(€) == w(z), V(€) == |z — 2|*V(z), where £ is given by (16).
Then

[veera = [ vaera

[VelePrase) = [TElerso.
= [ IvateFas- / (©) ds(©),

Dom(q;) = WL(R*) N LT,V ds)

Let

7



Then by (21) we have
N-(qv) = N-(q7) < CO)IVl|gs +1, V>0, (23)

It now remains to estimate the norm in the right-hand side (23). For conve-
nience, we work with the Luxemburg norm (4). For any x > 0, we have

fo(52) o - [ (55) oo

- (P ) e

=) |z — 20|? ((!z _120’2 V;)) In (1 . V,j ) B Vf:)) - _1ZO|2 ds(2)

(oon (1) 22)-122)

! ds(z)

|z — zo|?

IN
=
o
»

+ %/Fv<2)ln(1+|z_20‘2) d5(2)+/rln(1+|z—30|2)

V(Z) 2 — Z s(z
< /FB(T> ds(2) + = FV(z>1n(1+|z o|) ds(z)
4 2/Fln(1+|z—zo|) |z—120|2 ds(2).

Let
i max { [Vl ., [ V014 =) ds(2) ).
I
Then

/~B(Vﬁ(f)> ds(&) S1+2+2/1n(1+|z—zo|)mds(z) = Cy < 00




(by (15)). Hence, by (7) we have
||‘7H(B,f) < OQHI&X{HV”(BI),/V(Z) In(14 |z — 2]) ds(z)}
r

< (O (HVH(B,F) +/FV(z) In(1+ |z — z)) ds(z)) .

By (6) and (23) the proof is complete.
[l

In the next theorem, we give an analogue of the Birman-Solomyak type
estimate presented in [6] (see also §5 in [18]). Without loss of generality,
assume that F'(0) = 0. Let

U, = [¥" " ', n>0, Uy:=le'e], U,:= [e’an‘,e’Q‘n‘_l], n <0,
1 n—1 n
A, = {x€R2:ze2 §|x|§Le2}ﬁF,n>O,
2 1
Ay = {:EER L ge §|x|§Le}ﬂF,
1 n n|—
A, = {xE]R2 : z€_2|§|f|§L€_2ll}ﬂrvn<0,
Vo = x€R2 : ewlg]x\gew}ﬂf‘,n>0,
Yo = {IGRQ ce <z <e}nT,
Vo = {x ceR? : 2" <l|z| < e‘anH} NI, n<0.

There exists an integer ng such that e > L. One can take ng =
[log,log L] + 1, where [-] denotes the ceiling function, i.e., [a] is the least
integer greater than or equal to a. Increasing ng if necessary, we can assume
that ng > 0. Thus

A, C {:L‘ cR? ;. 21207 < |z] < e2n+2n0—1} ., n>0,
Ay C {x cR? : 1207 < lz| < el+2n0_1},
A, C {x ER? : 22T < gl < 6_2|W‘71+2n071}, n < 0.

Let

n, .:{ n+1, |n|>ng N ::{ n—1, |n|>ng (24)

no+ 1, |n| < ny, —ng — 1, |n| < ng.

9



If n > ng, then 2"+ = 27+l = 27 4 9n > 9n 4 9ol gpd 9n-—1 = 9n—2
7 (1—-3) <2m ' (1— 5t) =277 = 2771 If n < —nyg, then —2/"-!

on—nq

—olnl+1 — _glnl_glnl < _9lnl_9no—1 3q —9oln+l=1 = _9lnl-2 — _9ln|-1 (1 — %)
—2in=1 (1 - m) = 2=t 4 9mo=l " Finally, if |n| < ng, then 2"+ =
ono+l — 9no 4 om0 > 2|n| 4 on0—1 and _2|n,| — _—9notl — _9no _ 9no
—2Inl — 9mo—1 Hence
n4
AMC U w ez (25)
k=n_
Let
Q, = {zeR: 2" <|z[]<2"}, neZ,
1
Ny = {x €R? . an_l < |z| < LQ”} Nnr,
I, = {zeR®: 2" <|z[<2"}NT.
Then there exist an integer n; such that 2"~! > L. One can take
ny = [log, L] + 1. This means that
M C {z €R? : 2"7™ < g < 2"PM—1Y
and
n+np—1
m< |J Tk (26)
k=n—ni1+1
Hence, Lemma 2.2 implies
) n+ni—1 (
IVIEY, <IVIgm <8 > VISR, (27)
k=n—mi+1

where

B = sup ax i .
nez, k=n—ni+l,.. n+n1—1 ‘Fk’

It is important to show that 5 is finite. Foreachn—n;+1 <k <n+n; —1,
Ty > 2.2kt > 2n=m+l Since 5, is a chord arc curve, there is a constant

K > 1 such that
7,] < 2LK2" = 2" K L.

Thus
|77n| < 2n+1KL

Ty = 2t =2"KL < 00.

10
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Let

On ::/ lHog [2||V () ds(z), n€Z\ {0}, Qo ::/ V(z)ds(z),

Y0

R, := ||V||gf‘§)n, n € Z.

Theorem 4.3. There exist constants ¢y, ¢, C3, Cy > 0 depending on L such

that
No(qy)<1+4Cs > V@Qu+Ci Y. R, V=0 (28)

{@n>e1} {Rn>c2}

Proof. Let V(y) := V(F(y)), u(y) :== w(F(y)), w € Dom(qy). Since F is
bi-Lipschitz, there exist constants C's > 0 and Cg > 0 depending on L such
that

[ ve@rar = & [ V)P,
R2 Cs Jre

ﬁV@W@W%@)S(@4WM@W@ﬁW@L

Hence
N_(qv) < N_(q¢,v), (29)
where C;7 := C5Cg and
%Mm;:/WwwW@—@/VwﬂM@nW@h
R2 R
Dom(qe7) = W3 (R*)NL*(R, V(.,0)dy).

Let (r,0) denote the polar coordinates in R* r € R, 6 € [, 7] and

ur(r) := % /7r u(r,0)dl, upn(r,0) ;= u(r,0) —ug(r), uve CR*\{0}).

Then -
/ upn(r,0)do =0, Vr >0, (30)

—T

and it is easy to see that
/ urvny dy =0, Yu,veC (]R2 \ {O}) N L2 (Rz) .
R2

Using the representation of the gradient in polar coordinates one can easily
show that

/ VurVuy dy =0, Yu,ve Cy° (]RQ) .
R2

11



Hence u — Pu := ug extends to an orthogonal projection P : Wy (R?) —
W} (R?). Since

/ IVl dy = / Vurl? dy + / V|2 dy,
R2 R2 R2

/mu\2dy1 < 2/V|UR|2dy1+2/V|uN|2dyl,
R R R

one has
Nf(qcﬂ/) < Nf(‘11,2c7\7> + Nf<Q2,2C7f/> (31)

where N_(q; 50, 7) and N_(qy »c, ) are the restrictions of the form N_ (g, )
to PW3(R?) and (I — P)W,}(R?) respectively.

To estimate the right-hand side of (31), we start with the case of

W(R?) = {u € W5 (R?) : u(x) = ug(r)}.

Let V.(r) := V(r) + V(=r). Then
/R 7 (1, 0)lure (. ) s = / V() fur ()2 dr

Using the exponential change of variables r = ¢’ and using the notation
ur(y) = ur(r) = v(t), we have

/ Vur(y)? dy = 2 / () e
R2 R

07/11@ Vo (1) Jug (r) 2 derW/]RG(t)|v(t)|2 dt,

and

where

G(t) == 5707‘2"(€t>‘ (32)

Hence, we have the following well studied one-dimensional Schrodinger op-
erator on L*(R)

d2
_8 > 0.
o G, G>0
Let
qac[v /|v ()] dt — 2 /G Yo(t)|? dt,
Dom (qz) = )N L2 (R, Gdt).

12



Furthermore, let

In — [2n—1’ 2”]’ n > 07 IO — [_1’ 1]7 ]n = [—2|”|7 _2|n\—1]7 n <0
and
Q.= [ Gt n#0. %= [ Gy (33)
In I
Then one has
N-(qracyv) < Nogae) S14+761 > 1/Q, (34)
{Q,>0.046}

(see the estimate before (39) in [18]). Next, we consider the case of
(I = PYW3(R?*) = {u € W,(R?) : u(y) = un(y)}

to obtain an estimate for the second term in (31). Let J, :=Q, "R, n € Z
and

4o, lun] = / Vun(y)P dy — 2C; / 7 (1, 0) [unc (g, 0) 2y,

Dom(q272c7‘~,) (I - P)Wz (R2)HL2(‘~/ (-,0)dy1),
q2,2o7f/,ﬂn[u] ::/ Vu(y) |2 dy — 2C4 / (y1)|u(y | dy,

Dom (g5 50 7.0,) = {u € W, (Q < Vd y1> DU, = 0}

where ug = Q‘ Jou(y)dy. Note that v, = 0 for any v € (I — P)W,(R?).
Using [17 Lemma 3| 1nstead of [18, Lemma 7.6] in the proof of [18, Lemma

7.7], one can show similarly to [18, Lemma 7.8] that there is a constant
Cs > 0 such that

N (®200,7.0,) < CSH‘/”;\})H vV > 0.

Let D, := ||V @) Then for any ¢ < Cis, the variational principle (see, e.g.,
[10, Ch. 6 § 2.1, Theorem 4]) implies
N_(G90,7) <Cs Y. Dy, VYV >0. (35)
{Dp>c:n€Z}

If ||V||BJ < C , then N_(gy 50,1 5,) = 0 and one can drop this term from
the sum in (35) Now it follows from (31), (34) and (35) that

No(qep) 14761 > V/Qu+Cs > Dy, YV =0. (36)

{Qn>0.046} {Dn>c:n€z}

13



It now remains to write the estimate for N_(q. ;) in terms of the original
potential V' to obtain an estimate for N_(qy) (see (28)).
Let g, .= F({y € R : |y| € U,}). Then we have for n # 0 by (32) and (33)

1 -
Q.= [ |t|G(t)dt= —07/ [t|e' Vi (e') dt
27T I,

In

1 3
- §O7/Un [ og |V, (r) dr

1 .
= 2—07/ | log y1|Vi(y1) dy
T Un

< -0 (Lot [ V(o) dsto) + / log ||V () ds( >)
Jn
< —C7Lmax{1 log L} (/ / |log |z||V (x) ds(z ))
In
< —C7Lmax{1 log I} (/ / log ]|V (z) ds(x ))
A
< Lomax{LlogL} 3 ( / Vie)dsta) + [ [loglel]Va) dsio))
k=n_ Tk Yk
< C19 Z Qk7
k=n_
where Cy := 5-C7Lmax {1,log L} (see (25)). For n =0,
Qo= | G(t)dt = —C'7/ V(e dt = iC7 V. (r)dr
Ip I 27T Uo
1 -
= 2—07 Vi(yr) dy; < —C’7L/ V(z)ds(z)
@ Uo Jo
1 no+1
g 507 / V( )dS( < —07 k_; 1/
no+1
> Q.
k=—np—1
So,
Q,<Cy Y Q Ynel (37)
k=n_

For each n € Z, there exists n* € [n_,n,| NZ such that

Qn = . max Q.

=N_,..., n4
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Note that for any m € 7Z, there are no more than 2ny + 5 numbers n € 7Z
such that m € [n_,n]. Hence

761 > V., < 761 > VG20 + 3)Qur

{9n>0.046} {Qn* - CQ&%OH) }
{Qn>cl}
where C3 := 7.61(2ng + 5)1/Co(2n9 + 3), ¢ := 09?2'%13)'

Let £, := F(.J,). Since V(1) = V(F(y1)), we have

D, = [7& —sup{ Vgt an| [ Algtwhan <% r}
=sup{ [ vEusdn|: [ Algt dy1<ur}
gsup{L / Via)h(z)ds(z)| . [ A(()])d }

ln ln
§Lsup{/ V(z)h(z)ds(z)| : / A(\h(:c)])ds(x)gL\nn]}
" n+ni—1 . n+ni—1
= LIVIEX < L vgy <28 Y VISR =128 Y R
k=n—mi1+1 k=n-—mni1+1

(see (12) and (27)).
For each n € Z, there exists n' € [n —ny + 1,n +n; — 1] N Z such that

R+ = max Ry.
k=n—ni1+1,..., n+ni—1

Note that for any m € Z, there are 2n; — 1 numbers n € Z such that
m € [n—ny + 1,n+ n; — 1]. Hence

Cs Y D,<Cs > L*B(2n = 1)Ry < Cy Y R, (39)

{Dn>CZ’n€Z} {Rn-r>m} Rp>co
where C, := C3L?3 (2n; — 1)? and ¢, := 75D This together with (36)
and (38) imply (28). O
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