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Abstract 

In this paper, the spectrum of the Laplace operator on a strip with 
constant width subject to four different boundary conditions is 
investigated. In all the four situations, we prove that its spectrum starts 
from the first eigenvalue of the one-dimensional Laplacian considered 
along the width of the strip. Unlike the other cases, we demonstrate 
that in the case of Robin boundary conditions, the negative part of the 
spectrum is not necessarily empty and establish sufficient conditions 
for this to happen. 

1. Introduction 

It is well known that the operator –∆ densely defined on the space 

( )nL R2  is self-adjoint and its essential spectrum is equal to [ ),,0 ∞  which is 

absolutely continuous. However, in the case of a strip, the bottom of its 
essential spectrum depends on the boundary conditions. Our main interest in 
the present paper is to describe the location of the spectrum of the Laplacian 
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on a straight strip subject to various boundary conditions. The precise 
description of the problem studied here is as follows: 

Let 0>a  and ,IS ×= R  where ( ),,0 aI =  with Neumann (N), 

Dirichlet (D), Dirichlet-Neumann (DN) or Robin (R) boundary conditions. 
Consider the following spectral problem: 





∂=
λ=∆−

,on0
,in
SuB

Suu

l
 (1) 

where lB  is one of the boundary operators, and 

( ) { ( ) },0:Dom 2
2 =∈=∆− uBSWu l  

where ( )SW 2
2  denotes the standard Sobolev space ( ),2 SH  that is, the space 

of square integrable weak derivatives up to the second order (see, e.g., [1]       

for details). The operators on the transverse section I, ,I
l∆−  are the usual 

Laplacian on ( )IL2  with Dirichlet boundary conditions if ,Dl =  the 

Neumann conditions if ,Nl =  the Dirichlet at 0 and the Neumann one at a          
if DNl =  or the Robin conditions if .Rl =  Robin conditions can be 
considered as a generalization or a linear combination of the Dirichlet and 
Neumann boundary conditions (see (3)). 

2. Dirichlet, Neumann and Dirichlet-Neumann Boundary Conditions 

Let { }.,, DNNDl ∈  Assume that (1) has a non-trivial solution of the 

form 

( ) ( ) ( ) .0,0,, ≠≠= YXyYxXyxu  

Then one has 

( )
( )

( )
( ) CyY

yY
xX
xX =λ+

′′
=

′′
−  in S 

for some suitable separation constant C. This sort of separation of variables 
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gives rise to two independent one-dimensional spectral problems, that is,    
the longitudinal and the transverse one. The spectrum of the longitudinal 

Laplacian ( )R∆−  on ( )R2L  is the positive-real semi-axis, i.e., 

( ) ( ) [ ).,0 ∞=∆−σ=∆−σ RR
ess  

The eigenvalues of the transverse Laplacian ( )I
l∆−  on ( )IL2  are given by 

( ) ( ) ,122:,1:,: 2
2

2
2

2
2

−




 π=λ−





 π=λ





 π=λ nanana

DN
n

N
n

D
n  (2) 

where ....,2,1=n  The corresponding normalized eigenfunctions { }∞=1nnf  

are given as follows: 

( ) yayf l
n

l
n λ= sin2:  for { },, DNDl ∈  

( )










≥λ

=
=

.2ifcos2

,1if1

:
nya

nayf
N
n

N
n  

Since the eigenfunctions l
nf  form a complete orthonormal set in [ ]( )aL ,02  

by Fourier analysis, there are no other eigenvalues apart from those listed in 
(2) (see, e.g., [2] for more details). The description of the spectral properties 
of (1) for { }DNNDl ,,∈  can also be found in [3, 4, 7] and the references 

therein. 

Theorem 2.1 [2, Theorem 4.1.5]. The essential spectrum of a self-adjoint 

operator H on a Hilbert space is empty if and only if there is a complete set 

of eigenfunctions { }∞=1nnf  of H such that the corresponding eigenvalues nλ   

converge in absolute values to ∞ as .∞→n  

Thus, by the above theorem and (2), ( ) .∅=∆−σ I
less  
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Theorem 2.2 [Weyl criterion]. Let A be a self-adjoint operator on a 
Hilbert space .H  A point R∈λ  belongs to ( )Aessσ  if and only if there 

exists a sequence { } ( )ADf nn ⊂∈N  such that for all nn ffn ,1, =∈ N  

converges weakly to 0 and 

0→λ− nn fAf  as .∞→n  

Moreover, { }nf  can be chosen as an orthonormal. 

Theorem 2.3 (See, e.g., [8, Section 10.1, Theorem 1]). Let { } N∈nnf  be a 

bounded sequence in a Hilbert space .H  If 0, →Hgfn  as ∞→n  for g 

in a dense subspace of ,H  then 0→nf  weakly in .H  

Theorem 2.4 (cf. [6, Theorem 4.1]). ( ) ( ) [ ).,1 ∞λ=∆−σ=∆−σ lS
less

S
l  

Proof. Let [ ]ul
IE  and [ ]ul

SE  denote the quadratic forms of the Laplacian 

on I and S, respectively, subject to the boundary conditions l. Since ( )I
l∆−σ  

starts by ,1
lλ  for all ( ),Dom I

lu ∆−∈  we have 

[ ]
( )∫ λ≥=

a

IL
l

y
l
I udyuu

0
2

1
2 .2E  

Now, 

[ ] ∫ ∫+=
S S yx

l
S dxdyudxdyuu 22E  

∫≥ S y dxdyu 2  

∫ ∫ 





=

R
a

y dyudx
0

2  

( )
.2

1 2 SL
l uλ≥  

This implies that ( ) [ ).,1 ∞λ⊆∆−σ lS
l  



On the Spectrum of the Laplacian on a Strip … 1667 

On the other hand, pick ( )R∞∈ϕ 0C  with [ ]1,1supp −=ϕ  such that 

( ) .12 =ϕ RL  Let ( ) 




ϕ=ϕ

−

n
xnxn 2

1
:  so that ( ) .12 =ϕ RLn  

Take l
1λ≥λ∀  and consider a sequence { } ( )S

lnnu ∆−⊂∞
= Dom1  given by 

( ) ( ) ( ).:, 11 yfexyxu lxi
nn

lλ−λϕ=  

Then 

( ) .12 =SLnu  

Since ( ) ( ) ( )yfyf lll
111 λ=″−  and 

( ) ( ) ( )yfexyxu lxi
nn

l

11, λ−λϕ′′=∆  

( ) ( ) ( ) ( ),2 111 11 yfexyfexi lxi
n

lxi
n

l ll λ−λλ−λ λϕ−ϕ′λ−λ+  

( ) ( ) ( ) ( )yfeyxyxuyxu lxi
nnn

l

11,,, λ−λϕ′′−=λ−∆−  

( ) ( )yfexi lxi
n

l l

11 12 λ−λϕ′λ−λ−  

implying that 

( ) l
n

ll
nn

S
l ffu 111 2 ϕ′λ−λ+ϕ′′≤λ−∆−  

0121
12 →ϕ′λ−λ+ϕ′′= nn
l  as .∞→n  

Now, it remains to show that ,0→nu  ∞→n  weakly in ( ).2 SL  For any 

,N∈N  let 

( )
( ) ( )

( )



>

≤
=

Nyxw

Nyxwyxw
yxwN ,if,0

,if,,
:,  
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with ( ).1
2 SWw ∈  Then ( ) ( )SLSLwN

21 ∩∈  and ( ) 02 →− SLNww  as 

.∞→N  Also, 

( ) ( ) ( ) ( ) 0const, 112 →≤≤ ∞ SLNSLNSLnSLNn w
n

wuwu  

as .∞→n  

Since ( ) ,1=SLnu  nu  converges weakly to 0 in ( )SL2  by Theorem 2.3. 

Thus, Theorem 2.2 implies that ( )S
less ∆−σ∈λ  and 

[ ) ( ) ( ).,1
S
l

S
less

l ∆−σ=∆−σ⊆∞λ   

3. Robin Boundary Conditions 

In this section, we discuss in detail the spectrum of the Laplacian on a 
straight strip with Robin boundary conditions. We shall see that the negative 
part of its spectrum is not necessarily empty as opposed to the cases of 
Neumann, Dirichlet and Dirichlet-Neumann boundary conditions. Theorem 
2.4 and its proof remain true for the case of Robin boundary conditions but 
the quadratic form of the Laplacian involves boundary terms. 

Let [ ] [ ].,01,0:0 aS ×=  Consider the following eigenvalue problem: 

( ) ( )
( ) ( )
( ) ( )












=β+

=α+

==

λ=∆−

0,,

,00,0,

,0,1,0

,in 0

axuaxu

xuxu

yuyu

Suu

y

y

xx
 (3) 

for .,, R∈λβα  A related type of problem has been studied in [5], that is, 

( ) ( ) ( )
( ) ( ) ( )








=α+

=α−

λ=∆−

,0,,

,00,0,

,in

axuxaxu

xuxxu

Suu

y

y  (4) 
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where ( )xα  is positive for all .R∈x  Under the hypothesis that ( )xα  tends 

to a constant as ,∞→x  the essential spectrum of (4) was determined        

and a sufficient condition for the existence of the discrete spectrum was 
established. However, in this section, we only study the location of the 
bottom of the spectrum when one chooses the boundary conditions in (3). 
We establish sufficient conditions for the bottom of the spectrum to lie on 
negative part of the real line. Assume that a solution of (3) has the form 

( ) ( ) ( )., ywxvyxu =  

Then (3) reduces to two one-dimensional problems, namely: 

( ) ( ) ( )
( )
( )








=′

=′

<<τ−λ=′′−

01

,00

,10,

v

v

xxvxv

 (5) 

and 
( ) ( )

( ) ( )
( ) ( )








=β+′

=α+′

<<τ=′′−

,0

,000

,0,

awaw

ww

ayywyw

 (6) 

where R∈τ  is a separation constant. 

The solution of (5) is given by 

( ) ....,2,1,0,,cos 22 =π+τ=λπ= mmxmxv  (7) 

To solve (6), we consider the following cases: 

(i) For ,0=τ  the solution of the ordinary differential equation in (6) is 
of the form ( ) BAyyw +=  for some constants A and B. The first boundary 

condition implies that 

( ) ( ).1take1 =+α−= Byyw  

This implies that 0=τ  is in the spectrum if and only if the following 
condition holds true: 

( ) .1 β=αβ+ a  (8) 
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Hence, when ,0=τ  the solutions of (3) are given by 

( ) ( ) ....,2,1,0,,1cos, 22 =π=λα−π= mmyxmyxu  (9) 

(ii) 0>τ  gives the following general solution: 

( ) .sincos yByAyw τ+τ=  

The boundary conditions in (6) yield 

( ) ( )1takesincos =τ
τ
α−τ= Ayyyw  (10) 

and 

( ) .tan
αβ+τ

τα−β=τa  (11) 

Thus, we get a sequence ...,2,1,2 =θ=τ nnn  satisfying: 

(a) as ,,0, a
n

n
π→θ→βα  

(b) as ,,, a
n

n
π→θ∞±→βα  

(c) as ( ) ,2
12,,0 a

n
n

π+→θ∞±→β→α  

(d) as ( ) .2
12,,0 a

n
n

π+→θ∞±→α→β  

The related eigenfunctions are 

( ) .sincos
...,2,1=






 θ

θ
α−θ=

n
n

n
nn yyyw  (12) 

Hence, the solutions of (3) become 

( ) ,sincoscos, 





 θ

θ
α−θπ= yyxmyxu n
n

n  

....,2,1...,,2,1,0,222 ==π+θ=λ nmmn  (13) 
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If ,β=α  then one gets ....,2,1,0,
2

=




 π=τ na

n  Thus, (13) becomes 

( ) ,sincoscos, 




 π

π
α−ππ= ya

n
n

aya
nxmyxu  

....,2,1,0...,,2,1,0,22
2

==π+




 π=λ nmma

n  (14) 

See [9] for more details. 

Also, a special case of (11): ,αβ−=τ  then ,0cos =τa  i.e., =τ  

( ) ,2
12 2






 π+

a
n  ....,2,1,0=n  So, this case occurs if and only if =αβ  

( ) 2

2
12






 π+− a

n  for some n. Hence, (13) becomes 

( ) ( )
( )

( ) ,2
12sin12

2
2

12coscos, 




 π+

π+
α−π+π= ya

n
n

aya
nxmyxu  

( ) ....,1,0...,,1,0,2
12 22

2
==π+





 π+=λ nmma

n  (15) 

(iii) Let 21 τ<τ  be the smallest eigenvalues of (6). For some values of        

α and β, 1τ  or 2τ  might be negative. Suppose that ( )02 >σσ−=τ  is a 

negative eigenvalue. Then (10) and (11), respectively, become 

( ) ( ) ( ),sinhcosh yyyw σ
σ
α−σ=  (16) 

( ) ( ) .tanh 2 αβ+σ−

σα−β=σa  (17) 

To investigate when this happens, note that (8) divides the ( )βα, -plane 

into three connected components and the number of negative eigenvalues in 
each of them is the same since eigenvalues are continuous with respect to α 
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and β. Consider the line ,α−=β  it transects all the three regions (see       

Figure 1). By applying the shift ,2, abbyy =−  (6) becomes 

( ) ( )
( ) ( )
( ) ( )








=α−′

=−α+−′

<<−τ=′′−

.0

,0

,,

bwbw

bwbw

bybywyw

 (18) 

 

Figure 1. ( ) .,1 α−=ββ=αβ+ a  

So, if ( )yw  is an eigenfunction, then the function ( ) ( )ywyQ −=  is also 

an eigenfunction with the same eigenvalue. Thus, we can consider separately 
the eigenfunctions that are even functions and those that are odd functions, 
described, respectively, by 

( ) ( )
( )
( ) ( )








=α−′

=′

<<τ=′′−

0

,00

,0,

bwbw

w

byywyw

 (19) 

and 

( ) ( )
( )
( ) ( )








=α−′

=

<<τ=′′−

.0

,00

,0,

bwbw

w

byywyw

 (20) 
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Considering ( ) ( )yyw σ= cosh  and ( ) ( ),sinh yyw σ=  the boundary 

conditions in (19) and (20), respectively, yield 

( )bσσ=α tanh  (21) 

and 
( ).coth bσσ=α  (22) 

For ,0>σ  both the functions ( )bσσ tanh  and ( )bσσ coth  are monotone 

increasing with minima equal to 0 and ,1
b  respectively, at .0=σ  Thus, (21) 

has one solution if and only if ,0>α  and (22) has one solution if and only      
if .1>αb  Hence, if ,0>αa  then there is one negative eigenvalue with even 
eigenfunction and if ,2>αa  then another negative eigenvalue comes from 
odd eigenfunction. 

In general, we have the following situations: If 

(a) 0<β−αβ+α a  and ,11





 −>β<α aa  then ,01 >τ  

(b) 0=β−αβ+α a  and ,11





 −>β<α aa  then 01 =τ  and ,02 >τ  

(c) ,0>β−αβ+α a  then 01 <τ  and ,02 >τ  

(d) 0=β−αβ+α a  and ,11





 −<β>α aa

 then 01 <τ  and ,02 =τ  

(e) 0<β−αβ+α a  and ,11





 −<β>α aa  then 01 <τ  and .02 <τ  

Cases (c)-(e) produce the following solutions of (3): 

( ) ,sinhcoshcos, 





 σ

σ
α−σπ= yyxmyxu n
n

n  

...,,2,1,0,222 =π+σ−=λ mmn  (23) 

where 1=n  in Cases (c) and (d) while 2,1=n  in Case (e). 
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Thus, by Theorem 2.4 and (iii) above, we have the following: 

Proposition 3.1. Let α and β satisfy any of the conditions (c)-(e) above. 

Then ( ) ( ) .0, ∅≠∆−σ∞− S
R∩  

Remark 3.2. When ( ),0≠β=α  it is shown in [9] that 2
1 α−=λ  and 

that 0=λ  is not an eigenvalue. 

When ,0=α  we have the Neumann conditions at 0 and the Robin 
conditions at a. By (8), 0=τ  if and only if .0=β  If ,0>β  then 

0, 21 >ττ  by condition (a) above. If ,0<β  then 01 <τ  and 02 >τ  by 

condition (c) above. 

When ,0=β  we have the Robin condition at 0 and the Neumann 

conditions at a. By (8), 0=τ  if and only if .0=α  If ,0>α  then 01 <τ  

and 02 >τ  by condition (c) above. If ,0<α  then 01 >τ  and 02 >τ  by 

condition (a) above. 

Let .∞±→α  Then we have the Dirichlet conditions at 0 and the Robin 

conditions at a. Again, (8) implies that 0=τ  if and only if .01 =β+ a  

Equations (16) and (17), respectively, become 

( ) ( )yyw σ= sinh  (24) 

and 

( ) .tanh
β
σ−=σa  (25) 

Now, (25) implies that 

( )aσσ−=β coth  (26) 

(cf. (22)). Hence, 01 >τ  if 01 >β+ a  and 0,0 21 >τ<τ  if .01 <β+ a  

Let .∞±→β  Then we have Robin conditions at 0 and Dirichlet 

conditions at a. By (8), 0=τ  if and only if ,01 =−αa  and (17) becomes 
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( )aσσ=α coth  (27) 

(cf. (22)). Thus, 0,0 21 >τ<τ  if 01 >−αa  and 01 >τ  if .01 <−αa  
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