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Group Divisible Designs with Block Size Five from Clatworthy’s Table

Dinesh Sarvate, Nutan Mishrd , Kasifa Namyald

Abstract

Clatworthy’s table [2] lists thirty seven designs with block size 5 where the number of
groups is at the most equal to block size. Mwesigwa, Sarvate and Zhang have generalized one
of these designs in a recent paper [16]. In this note we generalize all but one such designs
listed in the table. As an aside, we prove that GBE(5; %, 2) with intersection pattern

(1, 4) does not exist for any except fom = 4.
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1 Introduction

Group Divisible Designs (GDDs) refered here are two associate class Partially Balanced Incom-
plete Block Designs (PBIBDs) withn groups of sizen each, consisting df binary blocks of size

k < mn Further we denote the number of treatments (or elements) in the desigr=bsnn

Two treatments from a group are called first associates of each other and occur tagéithes

and those from diernt groups are called second associates and occur toggttieres. A three
associate class PBIBD withtreatments consists of three symmetric relations such that any two
treatments are either first or second or third associates occuring among the binary blocks accord-
ingly 11, 4, or A3 times respectively. For any undefined terms as well as for the existence results

for the families of designs used in the paper, please refer to Stinson [20] and Colbourn and Dinitz

[3].

Definition 1 Balanced Incomplete Block Desig(BIBD): A BIBD is a pair(V, B) of a set V with
v elements and a set B with b blocks (subsets) of V, each of size Where each element occurs
in exactly r blocks and any two distinct elements of V occur together in exabthkcs. A BIBD

is represented by its parameters as BIBD, r, k, 1) or simply as BIBQv, k, 1).

It is known that the necessary conditions aréisient for the existence of BIBDs with block size
three and four. For block size five with the exception of a BIBE(15 k = 5,1 = 2) the same

result hold. See for example, [20].

Definition 2 Resolvable DesignsA block design isr-resolvable if the collection of blocks B can
be partitioned into, say t, classes such that each element of V is replicated ex#atlgs in each
class. Thus for am-resolvable design, & at. For a = 1, classes are called parallel classes and

the design is called a resolvable design.
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1.1 Resolvable BIBD with k=5

We use resolvable balanced incomplete block designs (RBIBD) in some of the constructions. The

necessary conditions for the existence of a RBIBR(1) are:
e A(v—1)=0 (modk-1) and
e v=0 (modk).

Fork = 5, there are three basic casgss 1,2, and 4, since necessary condtionsvatepend
only on whethert =1 (mod 2),4 =2 (mod 4) ord =0 (mod 4).

They are summarized in Abel, Ge, Zhu [1] as follows.

Theorem 1 Necessary conditions for existence of a RB(BB, 1) are A(v— 1) = 0 (mod 4)
and v= 0 (mod5) For A = 1,2, and 4 these conditions are gicient except forv,1) €

{(10,4), (15, 2)} and possibly for the following cases:
e 1 =1and ve {45 225 345 465 645},

e 1=2andve {45 115135195215 225 235295 315 335
345 395 and

e 1=4andve {1570,90,135 160 190 195.

Definition 3 Group Divisible Association Schem@D): When v elements are divided into m
groups of size n each then any two elements from the same group are called first associates and
any two elements from theffiirent groups are call second associates. Such an association scheme
is called Group Divisible association scheme. Notice that each element-hdsfinst associates

and (m - 1) second associates.

Definition 4 Group Divisible Design(GDD): A PBIBD with a GD association scheme with m
groups of size n is denoted by GDDm,
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k; 11, A,), if the blocks are of size k, the first associate pairs occutjiblocks and the second

associate pairs occur in, blocks.

According to their parametric relationships, GDDs are classifed into three classes, (see e.g.

[17], p127, Def 8.4.1):

1. Singular Group Divisible Designs (SGD)rif- 1, =0
2. Semi-regular Group Divisible Designs (SRGD) ¥ 1, > 0 andrk —vi, =0

3. Regular Group Divisible Designs (RGD)rif- 1; > 0 andrk — v, > 0

Remark 1 For a singular GDD, the necessary conditior=r1, forces that if an element is in the
block all first associates must also be in the block and hence the group size divides the block size,

hence the block size k must be a composite number. Thus SGDs do not existior k

Fu, Rodger and Sarvate [5] and Fu and Rodger [4] completely settled the existence of group
divisible designs withk = 3, though the necessary andistient conditions for GDDs with block
size 3 andl; = 0 were given in Hanani [8]. One can refer to Theorem 4.1 of Ge [6] reworded

below.

Theorem 2 Necessary and gicient conditions for the existence of a GDDm, 3; 0, 1) are
1. m>3
2. A((m-21)n=0 (mod 2) and
3. Am(m-1)n> =0 (mod 6)

To prove necessary conditions ardiguent for the existence of GDDs is especiallyhdiult
when the number of groups is less than the block size. For example, the existence of GDDs with

m < 4 is in general a diicult case to solve and even for= 4 not much has been done. Some of
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the work done ok = 4 is as follows: Clatworthy [2] has listed eleven GDDs whktk 4 andm = 3

with replication number atmost 10. Henson and Sarvate [9] generalized two of these designs. Then
Rodger and Rogers [18] generalized three more designs from the said list. Subsequently in [19]
they gave a generalization of another five from that list. Gao and Ge [7] gave general methods of
construction of GDDs witlk = 4 and also independently generalized all the eleven designs. Hurd
and Sarvate [13] constructed GDDs witls- 4 using Bhaskar Rao designs and gave necessary and
suficient conditions for the existence wherx3 < 8.

For GDDs withk = 5, Hurd, Mishra and Sarvate [11] have given an explicit construction using
MOLS of ordern, withm = 2 or 3 or 6 groups. These designs are not listed in Clatworthy table [2]
because their parameter range is beyond that of the table. Hurd, Mishra and Sarvate [12] took in
to account the block-group intersection pattern to construct GDDsknttb andm = 2 groups.
Obviously there are only three intersection patterns, viz5)X@1,4), and (23) with m = 2 and
k = 5, where a block is said to be of typa, b) or with intersection patterra(b) if there area
treatments from one of the groups antteatments from another.

Fork = 6, Keranen and Lféin [14] have constructed GDDs with two groups and block size six.
For the block configurations(t) = (3, 3), they proved that the necessary conditions afiecsent
for the existence of GDDX 2, 6; 11, 4,). Further for GDDs with the configuration,®) they gave
examples with minimal or near minimal index for group sires 5, except forn = 10,15, 160

and 190.

1.2 Block-group intersection

The type of a block is defined by its intersection pattern with groups. The type of a lblotck
GDD, is the seflb( G| : G is a group of the GDR We denote this set as a tupk,(a, - - , as)
wherea; < a, < --- < agandXa = k, obviouslys < m. If all blocks of a GDD are of the same type

or intersection pattern, we say that the GDD is of that particular intersection pattern. For example,
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if the intersection pattern of a GDD is,(d, 2), then all blocks of the GDD are of size 5, and for

any given block there are two groups which intersect the block in two elements each and one group
intersects the block in one element. In the present paper we focus on GDDs from Clatworthy table
[2] with k = 5 andm < 5.

For k = 5, there are seven possible intersection patternsl, {11,1), (1 1,1,2), (1 1,3),
(1,2,2), (1 4), (23) and (5). Not all designs given in Clatworthy’s table have all blocks of the
same configuration and hence for the purpose of classification we also include a mixed type of
GDD. A GDD of type (5) means every block is a subset of one of the groups, hence necessarily
A, = 0. This also mean we have just a collection of BIBDs on individual groups with ingdex
We will not discuss this type of GDD, besides Clatworthy table [2] does not list any such GDDs.
Also, note that if a GDD is of the type (1,1, 1, 1), thena; = O.

There are fortyfive designs in Clatworthy table with= 5. In Section 2 we list these designs
according to the intersection patterns of the blocks. In subsequent sections we generalize the
constructions of some of these designs witk 5. By generalizing a GDDwe mean to construct
a family of designs with certain parameters such that for a specific value we get the design listed
in Clatworthy table with the same intersection pattern.

Pattern (11, 1,2) has been studied by Mwesgwa, Sarvate and Zhang [16], where they have
proven that the necessary conditions arf@cient for the existence of such GDDs with four groups
except when the group size= 0 (mod 6).

The following theorem is taken from Ge [6]

Theorem 3 For A > 1, necessary conditions for the existence of a G, 5; 0, 1), viz.,
1. m>5,
2. A(m-1)n=0 (mod 4)and

3. Am(m-1)n?> =0 (mod 20)
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are also sgicient, except possibly whan= 2, m= 15and either n= 9 or gcdn, 15) = 1.

In view of the above result, designs witlh # 0 orm < 5 are more interesting candidates to

generalize. Hence now we focus more on constructing designsiyvih.

2 Seven tables

In this section we list fortyfive designs with= 5 from the Clatworthy’s table according to their
types. In many instances, Clatworthy lists several solutions for a GDD with the same parameters.
For example, R138 has been listed twice in the following tables as it has two solutions where the
first solution is of Type (12, 2) and the second solution is of Type 8. Many design parameters

are multiples of smaller design parameters given in the table and so are their respective solutions.
The comment column gives such information and the section number where the design has been
generalized. We have generalized the smallest designs as it automatically implies that it's multiple

has been generalized.

Remark 2 Pattern(1,1,1,1, 1) imposes the condition that must be0. The first thirteen GDDs
listed in Table 1 are SR GDDs with, = 0. For these designs, we haveni, and b=n?1, and
parameters are multiples of transversal designs. The last seven designs in Table 1 are regular

GDDs with m greater than five. Hence we do not discuss their generalizations in this paper.

3 Intersection pattern (1,1,1,2)

This pattern imposes a necessay condition on the number of gnougs, m > 3.

3.1 Generalization of R134

Theorem 4 If a GDD(2, m, 3; 0, 1)exists, then a

GDD(2,m,5;; = 2003 ), = 3m - 9) exists for m> 3.

ACCEPTED MANUSCRIPT
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Form = 3, please see Example 1 below. For- 3, we start with a GDD(2n, 3; 0, 1), which
exists form= 0,1 (mod 3) (see Theorem 2). It hbs= % blocks and the replication number
ris (m-1). For any group sayx,y}, X is in (m— 1) triples andy is in anothemm — 1 triples.
As x andy do not appear together in any blocks, the number of blocks containing n&itiear
yisb-2m-1) = w We construct blocks of size 5 as follows. LBtbe a block of
GDD(2 m, 3;0,1) which does not contain elements from a groupGdkien the new block of size

23 plocks. To enumerate

5isG U B. Therefore, X,y) will occurin A, =b-2(m-1) =
A2, we observe the following. Let andz be second associates anddéte in a groupH = {z w}.
Now except{x, z, u}, and{x, w, v} whereu andv are elements from groups other tharandH,
remainingm— 3 blocks containing will be used withH to create blocks of size five and hence in
these blocksx, 2) will occur m— 3 times. Considezin {y, z s} wheresis an elements from the
other group thats andH, there arem — 3 blocks withz not containingx ory. These blocks will
be unioned withG and we will have anothan — 3 blocks with &, z2). Now the block{x, z, u} will

be unioned with all groups exce@® H and the group containing, so anothem — 3 blocks are

contributed towardga, and hencel, = 3(m— 3). From the construction it is clear that the solution

maintains the intersection pattern.

Example 1 A GDIX2,3,3;0,1) has r= 2 and b= 4. For example, let the groups be G {1, 2},
G, = {3,4} and G = {5, 6} and four blocks of the GDD b¢], 3,5},{1, 4, 6}, {2, 3, 6}, and{2, 4, 5}.

These parameters and the blocks as per our construction given above in Theorem 4 leads to an

empty collections of blocks, which is a GPID3, 5; 0, 0).

In theorem 4, pluggingn = 4 gives R134 as follows:

Example 2 Consider a GD[{2, 4, 3;0,1) withr = 3and b= 8. Let the four groups be G= {1, 2},
G, = {3,4}, G3 = {5,6} and G = {7, 8} and the eight blocks be;B= {1,3,5},B, = {1,4,7},B3 =
{1,6,8},B4 =1{2,3,8},Bs = {2,4,6},Bs = {2,5, 7}, B; = {3,6, 7}, Bg = {4, 5, 8}. Note that BNG, =
0,BobNG3=0,BNnG, =0,B4NG3=0,B5NnG,=0,BsNnG,=0,B;,NnG; =0,Bg NGy = 0.

ACCEPTED MANUSCRIPT
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Blocks of new GDI2, 4,5, 11, 1,) are B UG, = {1,3,5,7,8},B, UGz = {1,4,7,5,6},Bs UG, =
{1,6,8,3,4},B, UGz = {2,3,8,5,6},Bs UG, = {2,4,6,7,8},Bs UG, = {2,5,7,3,4},,B; UG, =
{3,6,7,1,2},Bg UG; = {4,5,8,1,2}. We append to each block, the group that is absent. Thus we
get the GD[¥2, 4, 5; 2, 3) which is RL34.

3.2 Generalization of R150

Theorem 5 A three class partially balanced block design witk 6(2t+ 1), k=5,1; = 2, 1, = 3,

and Az = 3t exists for any t 1.

Consider a partition of = 5(2t + 1) elements into 5 sets and we call them gro@sG,,
G3, G4, andGs for convenience. We assume ti@&t = {a;, ay, - - - , a1}, Go = {by, bo, -+ -, b1},
G3 ={C1,Co, -, Coty1}, G4 = {dy, o,

-+, Oxi1}, andGs = {er, &, - - - , ex,1}. The blocks are constructed using the following schemes:

(G1, G1, G2, G3, Gs), (G, Gy, Gy, Gs, Gy), (Gz, Gz, G3, Ga, Gy),

(G2, G2, Gs, G, Gs), (Ga, Gz, G4, Gs, Gy), (Gs, G3, G4, Gs, Gy),

(G4, G4, Gs, Gy, G3), (Gs, G4, Gs, G1, Gy), (Gs, Gs, Gy, Gy, Gy),
and

(Gs, Gs, G1, G2, Gs).

In each of the schemes to construct the blocks we take two element&Sframd one each from
G;j, G, G as follows:

Recall a Latin squaré = [l;;] of order,t, on{1,2,--- ,t} is called an idempotent Latin square if

thel; = ifori =1,2,---,tand is called a symmetric Latin squard;jf= |} for all i, andj in
{1,2,---,t}. A Latin square where rows and columns are labelegilb®, - - - ,t} is refered to as a
quasigroupl(, o) whereioj = |;;. Let (L,0) be an idempotent symmetric Latin squa@I(S), i.e.,

a quasigroup of ordert2 1. ldempotent symmetric latin squares of odd orders can be obtained

by using the table for addition modulo n and renaming the entries, e.g. see ( [15], p6). We use the

ACCEPTED MANUSCRIPT
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elements of5; to denote the rows and columns of the three ISLS with entries from the symbols of
G,, Gz, G4 respectively. Then a block is given g, a;, bioj, Cioj. dioj} Wherei < j.

It can be seen easily thad; (o) type pairs occur Btimes, @, b;), fori # j occurs three times and

(&, a;), fori # j occur two times directly from the schemes. Fer1, the PBIBD thus constructed

gives the GDD R150. This construction gives the solution that maintains the intersection pattern.

4 Intersection pattern (1, 1, 3)

Clatworthy listed only one design in this class, nanfel9. We give two genralizations 8%.59.

4.1 First generalization of R159

The construction of R159 given in Clatworthy can be better understood when we considér¥ as
Zs and observe that the design is obtained by developing tiierdince setg1, 0), (2, 0), (4,0), (0, 1), (0, 4)}
and{(1,0), (2,0), (4,0),(0, 2), (0, 3)}. Hence we have an immediate generalizatiorkfer2t + 1 in

the following theorem:

Theorem 6 If for no nonzero element a, elements a aralboth are in the dference set D for a
cyclic BIBD(2k + 1,k, A = ";21), then a GDO2k + 1,5,k + 2;k — 1, 1) exists with djference family
solutions(D x {0}) U {(0, 1), (0,4)} and (D x {0}) U {(0, 2), (0, 3)}

The above theorem witk= 3 givesR159.

Example 3 Itis known thata BIBP11, 5, 2) exists with dfference sefl, 3,4, 5,9}, hencea GDIP11,5,7;4,1)

exists.

4.2 Second generalization of R159

This generalization of R159 is for amy = 2s+ 1:

ACCEPTED MANUSCRIPT
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Theorem 7 A GDD(7,2s+ 1, 5; 2s, 1) always exists.

Observe that(1, 0), (2,0), (4, 0), (0, 1), (0, 29)},

{(1,0),(2.0),(4,0),(0,2),(0,2s-1)}, - -, {(1,0),(2,0), (4,0), (0, s-1), (0, s+2)}, {(1,0),(2, 0), (4,0), (0, 5), (0, s+
1)} is the required dference family on groups} x Z,s,1 fori =0,1,--- ,6. As an example when

s = 2, the diference family produces the twofidirence sets for R159 as given in the beginning of

this subsection.

5 Intersection pattern (1,2,2)

Clatworthy listed four designs in this class.

5.1 Generalization of R139

The GDD(25,5, 4, 2) solution given as R139 can not be generalized to a family of GD®6, 4, 2)
with block intersection pattern (2, 2) . This is due to following necessary parametric relationship:
Recall that fork = 5, a block contributes ten pairs of elements. $aairs are first associates

and (10~ f) are second associates. This will lead to a linear equation

A1(n=1) _ Apn(m-1)

= “1o-n , for a fixedm, 1, andA,.

This equation will be satisfied by a unique set of parameters. Thus we gen&hli2eas in the

following theorem.
Theorem 8 There exists a GD[2t, 5, 5; 4t, 2(2t — 1)) for all positive integers t.
We create blocks of size 5 using each of the schemes given below:

(G1, G2, Gy), (G1, Gz, Gs), (G2, Gs, Gs), (G3, G4, Gp), (G4, Gs, G1).

Using a scheme, sa(, G,, G4), means the following:

ACCEPTED MANUSCRIPT
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e LetEy, Ey, -+, Ex_1 be a 1-factorization of &5 onG;.
e LetF,, Fy, - -, Fy_q1 be a 1-factorization of & onG..

e Combinefora=1,2---,2t -1, 1-factorskE; = {e, €1, -+, &_1} with Fa={fq, f1, -+, fi_1}
to construct acollectiob(é ={gufy,;:i=01---,t-1},)=0,1,--- ,t -1 of sets of size

4. The subscript+ j is evaluated modult
o LetGy={dp, 0y, ,dx1}.

e Append elementd,; to each of the 4-set ib(,.j1 to construct blocks of size 5 of the required

GDDforj=0,1,---,t— 1.

¢ Also appendl,,; to each of the 4-set i)*(ej1 to construct blocks of size 5 of the required GDD

forj=0,1,---,t-1.

One can check that we have the required GDD after all the schemes are used. It can be done by
observing that each group is coming as first or second coordinate of the scheme twice and hence
each edge oK, on a group, meaning each pair of distinct elements of the group octtinses.

This is because each edge is in one of the 1-factors, for exanpkein a set of size 4 iri:(g1 for
1=0,1,---,t— 1. When appended witth; and withd,;., it occures 2times. Simliarly it occurs

2t times through the second scheme. That resylts 4t.

To observe that; is 2(2 — 1), we have to observe that the pairs from distinct groups may arise in
two ways. For example, two groups are together once in the first and second coordinates or two
groups occur together in a scheme twice, one of the two group in first or second coordinate and
the other group in the third coordinate of a scheme. For example, a pair of gee@rslG, and a

pair of groupsG; andG,. Similarly one can check that the number of blocks i@ — 1). The

designs thus obtained, maintain the intersection pattern. In the above generalizatibrgives

R139.
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Example 4 Theorem 8 for t= 2 gives a GD[}4, 5, 5; 8 6). Its blocks can be written according

to the group schemes given in the proof of Theorem 8 . Below we are reproducing the first 24
blocks of GDD (4,5,5;8,6) using the schef&, G,, G4). The rest of the blocks can be generated
symmetrically according to the schemes given on the groups in the theorem. Note that, unlike

Clatworthy’s convention, here the groups areG={(4i + | + 1)[i =0,1,2,3,4; ) =0,1, 2, 3}.

113132132 ]3|1]2]1]l2]1]2|1]2
2 42| 4242|4343 |4[3|4|3]|4
5/7|7|5|5|7|7|5|5|6|6|5|5|6|6]|5
6|8/8/6|6|8|8|6|7|8|8|7|7|8|8|7
13|13 (14| 14| 15| 15| 16| 16| 13| 13| 14| 14| 15| 15| 16| 16
1]21]2]1]2]1]2
43|43 |4|3|4]3
5/6|6|5|5|6|6]|5
8| 7|7|8|8|7|7]|8
13|13 | 14| 14| 15| 15| 16| 16

6 Intersection pattern (1,4)

An obvious necessary condition for a GDD with intersection patter#) (i that
n>4 (6.1)

Another condition comes from observing that if a GDDG, k; A3, ;) of type (1, 4) exists, then
the intersection of blocks containing all first associate pairs of a gBwgth the groupG gives a

a BIBD(n,k — 1, 1;) onG. In other words:

Theorem 9 A necessary condition for a GOB, m,k; 11, 1) to exist with intersection pattern

(1, k- 1) is the existence of a BIBD, k — 1, 1,).

Also as allb blocks are of type (#4), each block contains six first associate pairs and four

second associate pairs of elements. Thus the total number of the first associate pairs in the whole
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design is ® and total number of the second associate pairbisHence ® = m(g)/ll and 4 =

(’;)nz/lz lead to a necessary condition

_3(m-1)n1,
17 2n-1) (6.2)
The next necessary condition arises from the replication number, as
. (n—=21)A; + (m-1)n1, _ ((n=1)2; + (m—=1)nA,) (6.3)

k-1 4

equivalently we have
((n=1)2; + (m-1)n2y) =0 (mod 4).

Clatworthy listed five designs in this class: R133, R135, R143, R146 and R152. Also R135 is a
multiple of R133 and R146 is a multiple of R143. Thus we generalize only three designs namely

R133, R143 and R152.

6.1 Generalization of R133

Taken copies of an existing BIBDY 4, 2). For such a design the replication number 252 To
each block of a copy BIBD( 4, 1) on the elements o6G;, add an element from the second
groupG,. Repeat this by switching the roles 6 andG,. These blocks so constructed give
a GDD(, 2, 5;na, 2¢-1),

Forn = 4, BIBD is a single block withh = 1 and we get R133. In general for= 1 (mod 3),
“%1 must divided,. Taking multiple copies of R133, the necessary conditions dfegunt for the

existence of GDD(4&, 5, 41,, A,). Further this construction maintains the pattersjl

6.2 Generalization of R143

As inthe case of R133, the necessary conditions dfemnt for the existence of GDD(3, 5, 415, A,)

as well. This family of GDDs can be constructed as follows: Let the grougs;h&,, G;. Take
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42, copies ofG; and adjoin each element of the groGp i, 1, times, fori = 1,2, 3 where the

subscripts are evaluated using mod 3.

Further consider Equation 6.2 whap = (n — 1)t for some positive integdr In this situation
family of GDDs of interest is GDD{, 3,5, 1; = 3nt, 1, = (n — 1)t) as this GDD also generalizes
R143 from Clatworthy table, as when= 4, we havel, = 3t andA; = 44, = 12t. . The family
can be constructed as follows: It is known that foe 0,1 (mod 4), a BIBD(, 4, 3) exists([3],
pl27). Taken copies of a BIBDAg, 4, 3) onn elements of groufs; and append an element of
group Gj,; and as the replication number1is— 1, we will haved, = n— 1. Takingt copies
of such a GDD will give the family GDD{, 3,5; 3nt, (n — 1)t), forn = 0,1 (mod 4). Further It
is known that BIBD(, 4, 6) exist for alln, and hence we can use the same method to construct

GDD(n, 3,5; 6nt’, 2(n — 1)t") for all t = 2t".

6.3 Generalization of R152

The construction oR152, i.e., of GDD

(4,5,5;8, 1), can be generalized to GDDEs + 1, 5; 4s, 1) of type (1 4) for any positive integes.

The resulting GDD is also 5-resolvable aRis52, withb = 45(2s+1),r = 55 k=5,1; = 4S5, 1, =

1. The groups ar&; = {i,m+i,2m+i,3m+ i} fori = 1,2,...,2s+ 1 The blocks are obtained by
cyclically developing the 4s initial blocks as in R152; m+ 1, 2m+ 1, 3m+ 1, x}, wherex belongs
toG, UG3 U --- U Gg,1. Cycles are of length @+ 1) cycling within the four subsets of elements
{,L,2,3,---,2s+1}, m+1m+2m+3,--- ,m+2s+ 1}, {2m+1,2m+2,2m+3,--- ,2m+ 2s+ 1},
83m+ 1,3m+ 2,3m+ 3,---,3m+ 2s+ 1}. This construction gives a solution that ratains the
intersection type (M4). Puttings = 2 in this series gives R152. The construction maintains the
(1,4) pattern.

For intersection pattern(4), m = 4 is an interesting case. We notice that Clatworthy has
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not lised any GDDs with intersection pattern of 4] wherem = 4. We are explore this case as

follows:

6.4 The case of a4

With the number of groups 4 and intersection patterd)lthe necessary condition reduces to

_ onA,
LT 2n-1)

(6.4)

Hence a GDD with 4 groups must be a GDD4, 5; ;Zr']‘le),/lz) with r = 322 if exists. Since

r > 15, Clatworthy may not have listed any design of typetjwith m = 4. On the other hand we
will show non-existence of a family of GDDs with intersection patterjiand 4 groups.

Fora, = 2,aGDD(44,5;12 2) exists on group&;, i = 1,2, 3,4. The set of elemenis = UG,
with the collection of blockss; U {j} Vj eV -G, i =1,2,3 and 4.

The above GDD is not a multiple of GDD(4, 5; 6, 1) because GDD(4
4,5; 6,1) does not exist as the necessary conditiod)(8 not satisfied.

Let 1, = 2, thena; = % hencen — 1 must divide 9. Therefore possible valuesnoére
n= 2,4 and 10. Now we are interested in the intersection pattern, d) thereforen > 4, hencen
can not be 2. Fon = 10, necessary conditions are neither satisfied for GDR{H) 5, 1) and nor

for GDD(1Q 4,5; 10, 2). This is in contrast with the case of GDD#5; 6, 1) where the necessary

conditions are not satisfied but GDD#5; 12 2) exists.

Theorem 10 A GDD(n, 4, 5; % 2) with intersection patterifl, 4) does not exists except forn4

when GD[¥4, 4, 5; 12 2) exists.

Fora, = 2(n— 1), a series of GDDY 4, 5; 9, 2(n— 1)) can be constructed. For= 4, the design is
three copies of the GDD(4, 5; 12 2). Using the necessary conditiam{1)4; +3n1, = 0 (mod 4)
, we have 8(n— 1)+ 6n(n—1) = 0 (mod 4),i.e.,, 8 -9n+6n°-6n=0 (Mod 4),i.e.n=0,1
(mod 4). Itis known thaton = 0,1 (mod 4), BIBDg, 4, 3) exists ([3], p127) with the replication
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numbern — 1. Use 3 copies of BIBD(, 4, 3) on each group withr8elements of the other three

groups to create blocks of size five of the required GDD. Hence we have

Theorem 11 Necessary conditions arefgaient for the existence of a GOR 4, 5; %tn, 2t(n — 1))

for all positive integer values of t.

7 Intersection pattern (2,3)

7.1 Generalization of R137

Theorem 12 A GDD(6t + 3,3,5; 8 + 4, 6t + 2) exists for all integers t 0

Start with a RBIBD(6+3,3,1), sayD, which is known to exist for all non negative integer$3],
p127).D has 3 + 1 parallel classes, say, 7o, - - - , w3t41. SO first consideD on G; and aKg, 3 on
G,. Recall thatkg, 3 has 3 + 1 two-factors, sayly, T, - - - , Ta,1. Take union of each tripfblock

of =; with each edge ofj for j = 1,2,--- 3t + 1 to create blocks of the required GDD of size 5.
We repeat the same procedure wadh andGz andG; andG;. It is is easy to count; as we are
repeating each trip/block of RBIBD(& + 3, 3, 1), & + 3 times as 6+ 3 is the number of edges in a
two-factor and we are also usind<g.,3: note that each edge &% will be appended with2+ 1
triplegblocks of a parallel class. Hende = 6t + 3+ 2t + 1 = 8t + 4. Counting of1, can be done
in a similar fashion. The degree of a vertexig, 3 is 6t + 2, SO an edge containing say an element
a of a groupG,, will be appended with the triples ot & 2 parallel classes of the BIBD d&, and
hencel, = 6t + 2. In the above theorein= 0 gives a GDD R137.

7.2 Generalization of R149

Theorem 13 A family of GDD with parametergt + 3,5, 5, 8(2t + 1), 2(3t + 1)) exists for positive

integers t> 0.

ACCEPTED MANUSCRIPT
17



Downloaded by [RMIT University Library] at 08:10 03 December 2017

ACCEPTED MANUSCRIPT

Considem = 3 (mod 6), equivalently lat = 6t+ 3 for some positive integer The set of blocks of

the required GDD is union of the set of blocks constructed on the following pairs of the five groups:
(G1. G2), (G1,G3), (G4, G1), (Gs,Ga), (G2, Ga), (G2,Ga), (Gs, Ga), (Gs,Ga), (Gs,Gs), (Ga,Gs) as
follows. Given a pair G;, G;) of groups, we construct blocks of size 5, by attaching each pair of
G; with all triples of a parallel class of a RBIBD{(& 3, 3, 6t + 3) onG;.

One can check thal, = 8(2t + 1) by observing that in the ordered pairsjfs above, each group
occurs twice as the first entry and twice as the second entry. When a grou; sathe first
entry, its pairs of distinct elements occur in the blocks of RBIR8, 3, 6t + 3), hence contribute

2(6t + 3) towards the count of;. Now each parallel class of the RBIBO($3,3,6t+3) has 2+ 1
triplegblocks, therefore any pair of distinct elements@foccurs altogether in 2(2 1) blocks
whengG; is the second entry. Thereforge = 2(6t + 3) + 2(2 + 1) = 8(2t + 1).

To countA,, observe that any two groupssi(G;) are together in only one ordered pair. bet

be an element o6; and lety be an element oG;. There are 6+ 2 pairs of elements o;
containingx. Each pair is attached with all blocks of a parallel class which contain all elements of
G, in particulary, exactly once and hence the pairy) occurs in the blocks of the required GDD
exactly (8 + 2) = 2(3t + 1) = 1, times. This construction maintains the pattery32 Fort = 0

we get GDD R149.

8 Intersection pattern Mixed type

Here is a generalization of R141.:

8.1 Generalization of R141

There are two non-isomorphic solutions with parameter GDD(5,2,5;5,4) in Clatworthy [2]. We
generalize the first solution as follows:

Generalization of the first solution: First if a BIBD{2/, 1) exists, then a GDD(2,v; 1+, 1)
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exists. The blocks of the GDD are the blocks of BIBD together with t copies of a partition of 2v
elements in two sets of size these two sets play the role of the groups. In fact, more generally, if

a BIBD(uv, v, 1) exists, then a GDIR( v, v; 1 + t, 1) exists.

We can generalize R141 in another way where the GDDs produced have block size 5. Suppose
a BIBD(%t, 5, 1) exists, then a GDD(%, 5, 1 + s, 1) exists, by using partition of 5t elements into t
groups of size five, the blcoks of the GDD are blocks of the BIBD ardpies of the groups as

blocks.

8.2 Generalization of R155, R156, R157, R158

These designs are from the same family. The construction is as follows: Take the blocks of

RBIBD(25,5,1) together witil; — 1 copies of a parallel class of blocks.

Theorem 14 If a RBIBD(v = mk k, 1) exists, then a GD[X, m,k; 2 + t, 1) exists.
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Table 1: Intersection pattern,(1, 1, 1, 1)

Designf v | r | b|m|n|A|A Comment

SR52 10| 4 1 8| 5|2|0)| 2 Remark2

SR53 10| 6 (12| 52| 0| 3 Remark2

SR54 10| 8 |16 5|20 | 4 2 solutions, duplicate 3R52
SR5510|10(20| 52| 0|5 Remark2

SR56 | 15| 6 (18| 5 |3| 0| 2 Remark2

SR57 | 15| 9 |27 53] 0| 3 Remark2

SR58 20| 4|16 54|01 Remark2

SR59 | 20| 8 |32]| 5 |4 | 0| 2 | 2solutions, duplicate SR58, Remark
SR60 | 25| 5 (25| 5|50 1 Remark2

SR61 | 25|10|50| 5 |5]0| 2 Duplicate of SR60 Remaik
SR62 | 35| 7 (49| 5 |7| 0|1 Remark2

SR63 40| 8 |64 58| 0|1 Remark2

SR64 45| 9 (81| 5|9|/0 1 Remark2

R144 | 12| 5 (12| 6 [2]| 0| 2 m>5

R147 |12|10(24| 6 |2 0 | 4 Duplicate ofR144
R153 | 24| 5 (24| 6 (4] 0| 1 m> 5

R154 [ 24|110,48| 6 [4| 0| 2 Duplicate ofR153
R161 |40 9 |72|10({4| 0| 1 m>5

R162 | 441088 |11({4| 0| 1 m>5

R163 [ 45/10/90| 9 |[5| 0 | 1 m>5
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Table 2: Intersection pattern,(1, 1, 2)

Designf v | r | b|m|n|A| A Comment

R134 | 8 | 5| 8| 4 |2]| 2| 3 | Generalized in Sectidh.1
R136 | 8 |[10|16| 4 |[2| 4 | 6 Duplicate ofR134
R145 12| 5 |12 4 |[3| 1| 2 Generalized ifil6]
R148 | 12|10 24| 4 |3| 2 | 4 Duplicate ofR145
R150 | 15(10| 30| 5 | 3| 2 | 3 | Generalized in SectidB.2
R160 | 39/10(78(13|3| 2 | 1 m>5
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Table 3: Intersection pattern,(I 3)
Design| v | r | b m{n|A| A Comment
R159 |35|10| 70| 5|7| 2 | 1 | Generalized in Sections 44.2
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Table 4: Intersection pattern,@, 2)

Designf v |r | b|im|in|A| A Comment

R138 | 9 |10|18/ 33| 8| 4 Duplicate ofR137
R139 |10| 5 |10| 5| 2| 4 | 2 | Generalized in Sectioh.1
R142 |10(10|20| 5|2 | 8 | 4 Duplicate ofR139
R151 (1810|369 |2| 8 | 2 m> 5
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Table 5: Intersection pattern,@)

Designf v |r | b|im|in|A| A Comment

R133 | 8 | 5| 8| 2|4| 4 | 2 | Generalized in Sectiof.1
R135| 8 |10/16| 2 |4| 8 | 4 Duplicate ofR133
R143 | 12| 5 |12| 3 |4 | 4 | 1 | Generalized in Sectiof.2
R146 | 12|10/ 24| 34| 8 | 2 Duplicate ofR143
R152 |20 10/40| 5|4 | 8 | 1 | Generalized in Sectiof.3
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Table 6: Intersection pattern,()

Designf v |r | b|im|in|A| A Comment

R137 | 9 | 5| 9 | 33| 4 | 2 | Generalized in Section1
R138 | 9 |10{18|3 (3|8 | 4 Duplicate ofR137
R149 |15/ 10|30| 5| 3| 8 | 2 | Generalized in Section.2
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Table 7: Intersection pattern mixed type

Designf v |r | b|im|in|A| A Comment

R140 |10| 7 (14| 5|2| 4 | 3 Open

R141 |10 10/20| 2 | 5| 5 | 4 | Generalized in SectioB.1
R155 | 25| 7 |35| 5|5| 2 | 1 | Generalized in SectioB.2
R156 | 25| 8 40| 55| 3 | 1 | Generalized in Sectiof.2
R157 | 25| 9 |45| 5 |5| 4 | 1 | Generalized in SectioB.2
R158 | 25/10|/50| 5|5| 5 | 1 | Generalized in SectiagB.2
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