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Abstract

Clatworthy’s table [2] lists thirty seven designs with block size 5 where the number of

groups is at the most equal to block size. Mwesigwa, Sarvate and Zhang have generalized one

of these designs in a recent paper [16]. In this note we generalize all but one such designs

listed in the table. As an aside, we prove that GDD(n,4, 5; 9n
n−1, 2) with intersection pattern

(1, 4) does not exist for anyn except forn = 4.
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ACCEPTED MANUSCRIPT

1 Introduction

Group Divisible Designs (GDDs) refered here are two associate class Partially Balanced Incom-

plete Block Designs (PBIBDs) withm groups of sizen each, consisting ofb binary blocks of size

k ≤ mn. Further we denote the number of treatments (or elements) in the design byv = mn.

Two treatments from a group are called first associates of each other and occur togetherλ1 times

and those from differnt groups are called second associates and occur togetherλ2 times. A three

associate class PBIBD withv treatments consists of three symmetric relations such that any two

treatments are either first or second or third associates occuring among the binary blocks accord-

ingly λ1, λ2 or λ3 times respectively. For any undefined terms as well as for the existence results

for the families of designs used in the paper, please refer to Stinson [20] and Colbourn and Dinitz

[3].

Definition 1 Balanced Incomplete Block Design(BIBD): A BIBD is a pair(V, B) of a set V with

v elements and a set B with b blocks (subsets) of V, each of size k< v, where each element occurs

in exactly r blocks and any two distinct elements of V occur together in exactlyλ blokcs. A BIBD

is represented by its parameters as BIBD(v,b, r, k, λ) or simply as BIBD(v, k, λ).

It is known that the necessary conditions are sufficient for the existence of BIBDs with block size

three and four. For block size five with the exception of a BIBD(v = 15, k = 5, λ = 2) the same

result hold. See for example, [20].

Definition 2 Resolvable Designs: A block design isα-resolvable if the collection of blocks B can

be partitioned into, say t, classes such that each element of V is replicated exactlyα times in each

class. Thus for anα-resolvable design, r= αt. For α = 1, classes are called parallel classes and

the design is called a resolvable design.
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ACCEPTED MANUSCRIPT

1.1 Resolvable BIBD with k=5

We use resolvable balanced incomplete block designs (RBIBD) in some of the constructions. The

necessary conditions for the existence of a RBIBD(v, k, λ) are:

• λ(v− 1) ≡ 0 (modk− 1) and

• v ≡ 0 (modk).

For k = 5, there are three basic cases,λ = 1,2, and 4, since necessary condtions onv depend

only on whetherλ ≡ 1 (mod 2),λ ≡ 2 (mod 4) orλ ≡ 0 (mod 4).

They are summarized in Abel, Ge, Zhu [1] as follows.

Theorem 1 Necessary conditions for existence of a RBIBD(v,5, λ) are λ(v − 1) ≡ 0 (mod 4)

and v ≡ 0 (mod 5). For λ = 1,2, and 4 these conditions are sufficient except for(v, λ) ∈

{(10,4), (15,2)} and possibly for the following cases:

• λ = 1 and v∈ {45,225,345,465,645},

• λ = 2 and v∈ {45,115,135,195,215,225,235,295,315,335,

345,395} and

• λ = 4 and v∈ {15,70,90,135,160,190,195}.

Definition 3 Group Divisible Association Scheme(GD): When v elements are divided into m

groups of size n each then any two elements from the same group are called first associates and

any two elements from the different groups are call second associates. Such an association scheme

is called Group Divisible association scheme. Notice that each element has n− 1 first associates

and n(m− 1) second associates.

Definition 4 Group Divisible Design(GDD): A PBIBD with a GD association scheme with m

groups of size n is denoted by GDD(n,m,
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ACCEPTED MANUSCRIPT

k; λ1, λ2), if the blocks are of size k, the first associate pairs occur inλ1 blocks and the second

associate pairs occur inλ2 blocks.

According to their parametric relationships, GDDs are classifed into three classes, (see e.g.

[17], p127, Def 8.4.1):

1. Singular Group Divisible Designs (SGD) ifr − λ1 = 0

2. Semi-regular Group Divisible Designs (SRGD) ifr − λ1 > 0 andrk − vλ2 = 0

3. Regular Group Divisible Designs (RGD) ifr − λ1 > 0 andrk − vλ2 > 0

Remark 1 For a singular GDD, the necessary condition r= λ1 forces that if an element is in the

block all first associates must also be in the block and hence the group size divides the block size,

hence the block size k must be a composite number. Thus SGDs do not exist for k= 5.

Fu, Rodger and Sarvate [5] and Fu and Rodger [4] completely settled the existence of group

divisible designs withk = 3, though the necessary and sufficient conditions for GDDs with block

size 3 andλ1 = 0 were given in Hanani [8]. One can refer to Theorem 4.1 of Ge [6] reworded

below.

Theorem 2 Necessary and sufficient conditions for the existence of a GDD(n,m,3; 0, λ) are

1. m≥ 3

2. λ(m− 1)n ≡ 0 (mod 2), and

3. λm(m− 1)n2 ≡ 0 (mod 6).

To prove necessary conditions are sufficient for the existence of GDDs is especially difficult

when the number of groups is less than the block size. For example, the existence of GDDs with

m ≤ 4 is in general a difficult case to solve and even fork = 4 not much has been done. Some of
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ACCEPTED MANUSCRIPT

the work done onk = 4 is as follows: Clatworthy [2] has listed eleven GDDs withk = 4 andm= 3

with replication number atmost 10. Henson and Sarvate [9] generalized two of these designs. Then

Rodger and Rogers [18] generalized three more designs from the said list. Subsequently in [19]

they gave a generalization of another five from that list. Gao and Ge [7] gave general methods of

construction of GDDs withk = 4 and also independently generalized all the eleven designs. Hurd

and Sarvate [13] constructed GDDs withk = 4 using Bhaskar Rao designs and gave necessary and

sufficient conditions for the existence when 3≤ n ≤ 8.

For GDDs withk = 5, Hurd, Mishra and Sarvate [11] have given an explicit construction using

MOLS of ordern, with m= 2 or 3 or 6 groups. These designs are not listed in Clatworthy table [2]

because their parameter range is beyond that of the table. Hurd, Mishra and Sarvate [12] took in

to account the block-group intersection pattern to construct GDDs withk = 5 andm = 2 groups.

Obviously there are only three intersection patterns, viz. (0,5), (1,4), and (2,3) with m = 2 and

k = 5, where a block is said to be of type (a,b) or with intersection pattern (a,b) if there area

treatments from one of the groups andb treatments from another.

Fork = 6, Keranen and Laffin [14] have constructed GDDs with two groups and block size six.

For the block configuration (s, t) = (3,3), they proved that the necessary conditions are sufficient

for the existence of GDD(n,2,6;λ1, λ2). Further for GDDs with the configuration (1,5) they gave

examples with minimal or near minimal index for group sizesn ≥ 5, except forn = 10,15,160

and 190.

1.2 Block-group intersection

The type of a block is defined by its intersection pattern with groups. The type of a blockb of a

GDD, is the set{|b
⋂

G| : G is a group of the GDD}. We denote this set as a tuple (a1,a2, ∙ ∙ ∙ ,as)

wherea1 ≤ a2 ≤ ∙ ∙ ∙ ≤ as andΣai = k, obviouslys≤ m. If all blocks of a GDD are of the same type

or intersection pattern, we say that the GDD is of that particular intersection pattern. For example,
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ACCEPTED MANUSCRIPT

if the intersection pattern of a GDD is (1,2,2), then all blocks of the GDD are of size 5, and for

any given block there are two groups which intersect the block in two elements each and one group

intersects the block in one element. In the present paper we focus on GDDs from Clatworthy table

[2] with k = 5 andm≤ 5.

For k = 5, there are seven possible intersection patterns: (1,1,1,1,1), (1,1,1,2), (1,1,3),

(1,2,2), (1,4), (2,3) and (5). Not all designs given in Clatworthy’s table have all blocks of the

same configuration and hence for the purpose of classification we also include a mixed type of

GDD. A GDD of type (5) means every block is a subset of one of the groups, hence necessarily

λ2 = 0. This also mean we have just a collection of BIBDs on individual groups with indexλ1.

We will not discuss this type of GDD, besides Clatworthy table [2] does not list any such GDDs.

Also, note that if a GDD is of the type (1,1,1,1,1), thenλ1 = 0.

There are fortyfive designs in Clatworthy table withk = 5. In Section 2 we list these designs

according to the intersection patterns of the blocks. In subsequent sections we generalize the

constructions of some of these designs withm≤ 5. By generalizing a GDDwe mean to construct

a family of designs with certain parameters such that for a specific value we get the design listed

in Clatworthy table with the same intersection pattern.

Pattern (1,1,1,2) has been studied by Mwesgwa, Sarvate and Zhang [16], where they have

proven that the necessary conditions are sufficient for the existence of such GDDs with four groups

except when the group sizen ≡ 0 (mod 6).

The following theorem is taken from Ge [6]

Theorem 3 For λ > 1, necessary conditions for the existence of a GDD(n,m,5; 0, λ), viz.,

1. m≥ 5,

2. λ(m− 1)n≡0 (mod 4)and

3. λm(m− 1)n2 ≡0 (mod 20).

6
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ACCEPTED MANUSCRIPT

are also sufficient, except possibly whenλ = 2, m= 15and either n= 9 or gcd(n,15)= 1.

In view of the above result, designs withλ1 , 0 or m < 5 are more interesting candidates to

generalize. Hence now we focus more on constructing designs withλ1 , 0.

2 Seven tables

In this section we list fortyfive designs withk = 5 from the Clatworthy’s table according to their

types. In many instances, Clatworthy lists several solutions for a GDD with the same parameters.

For example, R138 has been listed twice in the following tables as it has two solutions where the

first solution is of Type (1,2,2) and the second solution is of Type (2,3). Many design parameters

are multiples of smaller design parameters given in the table and so are their respective solutions.

The comment column gives such information and the section number where the design has been

generalized. We have generalized the smallest designs as it automatically implies that it’s multiple

has been generalized.

Remark 2 Pattern(1,1,1,1,1) imposes the condition thatλ1 must be0. The first thirteen GDDs

listed in Table 1 are SR GDDs withλ1 = 0. For these designs, we have r=nλ2 and b=n2λ2 and

parameters are multiples of transversal designs. The last seven designs in Table 1 are regular

GDDs with m greater than five. Hence we do not discuss their generalizations in this paper.

3 Intersection pattern (1,1,1,2)

This pattern imposes a necessay condition on the number of groupsm viz., m> 3.

3.1 Generalization of R134

Theorem 4 If a GDD(2,m,3; 0,1)exists, then a

GDD(2,m,5;λ1 =
2(m−1)(m−3)

3 , λ2 = 3m− 9) exists for m≥ 3.
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For m = 3, please see Example 1 below. Form > 3, we start with a GDD(2,m,3; 0,1), which

exists form≡ 0,1 (mod 3) (see Theorem 2). It hasb =
2m(m−1)

3 blocks and the replication number

r is (m− 1). For any group say{x, y}, x is in (m− 1) triples andy is in anotherm− 1 triples.

As x andy do not appear together in any blocks, the number of blocks containing neitherx nor

y is b − 2(m− 1) =
2(m−1)(m−3)

3 . We construct blocks of size 5 as follows. LetB be a block of

GDD(2,m,3; 0,1) which does not contain elements from a group sayG then the new block of size

5 is G ∪ B. Therefore, (x, y) will occur in λ1 = b − 2(m− 1) = 2(m−1)(m−3)
3 blocks. To enumerate

λ2, we observe the following. Letx andz be second associates and letz be in a groupH = {z,w}.

Now except{x, z,u}, and{x,w, v} whereu andv are elements from groups other thanG andH,

remainingm− 3 blocks containingx will be used withH to create blocks of size five and hence in

these blocks (x, z) will occur m− 3 times. Considerz in {y, z, s} wheres is an elements from the

other group thanG andH, there arem− 3 blocks withz not containingx or y. These blocks will

be unioned withG and we will have anotherm− 3 blocks with (x, z). Now the block{x, z,u} will

be unioned with all groups exceptG, H and the group containingu, so anotherm− 3 blocks are

contributed towardsλ2 and henceλ2 = 3(m− 3). From the construction it is clear that the solution

maintains the intersection pattern.

Example 1 A GDD(2,3,3; 0,1) has r= 2 and b= 4. For example, let the groups be G1 = {1,2},

G2 = {3,4} and G3 = {5,6} and four blocks of the GDD be,{1,3,5},{1,4,6}, {2,3,6}, and{2,4,5}.

These parameters and the blocks as per our construction given above in Theorem 4 leads to an

empty collections of blocks, which is a GDD(2,3,5; 0,0).

In theorem 4, pluggingm= 4 gives R134 as follows:

Example 2 Consider a GDD(2,4,3; 0,1) with r = 3 and b= 8. Let the four groups be G1 = {1,2},

G2 = {3,4}, G3 = {5,6} and G4 = {7,8} and the eight blocks be B1 = {1,3,5}, B2 = {1,4,7}, B3 =

{1,6,8}, B4 = {2,3,8}, B5 = {2,4,6}, B6 = {2,5,7}, B7 = {3,6,7}, B8 = {4,5,8}. Note that B1∩G4 =

∅, B2 ∩G3 = ∅, B3 ∩G2 = ∅, B4 ∩G3 = ∅, B5 ∩G4 = ∅, B6 ∩G2 = ∅, B7 ∩G1 = ∅, B8 ∩G1 = ∅.

8
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

R
M

IT
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
8:

10
 0

3 
D

ec
em

be
r 

20
17

 



ACCEPTED MANUSCRIPT

Blocks of new GDD(2,4,5, λ1, λ2) are B1 ∪G4 = {1,3,5,7,8}, B2 ∪G3 = {1,4,7,5,6}, B3 ∪G2 =

{1,6,8,3,4}, B4 ∪G3 = {2,3,8,5,6}, B5 ∪G4 = {2,4,6,7,8}, B6 ∪G2 = {2,5,7,3,4}, B7 ∪G1 =

{3,6,7,1,2}, B8 ∪G1 = {4,5,8,1,2}. We append to each block, the group that is absent. Thus we

get the GDD(2,4,5; 2,3) which is R134.

3.2 Generalization of R150

Theorem 5 A three class partially balanced block design with v= 5(2t+1), k = 5, λ1 = 2, λ2 = 3,

andλ3 = 3t exists for any t≥ 1.

Consider a partition ofv = 5(2t + 1) elements into 5 sets and we call them groupsG1, G2,

G3, G4, andG5 for convenience. We assume thatG1 = {a1,a2, ∙ ∙ ∙ ,a2t+1}, G2 = {b1,b2, ∙ ∙ ∙ ,b2t+1},

G3 = {c1, c2, ∙ ∙ ∙ , c2t+1}, G4 = {d1,d2,

∙ ∙ ∙ ,d2t+1}, andG5 = {e1,e2, ∙ ∙ ∙ ,e2t+1}. The blocks are constructed using the following schemes:

(G1,G1,G2,G3,G5), (G1,G1,G2,G3,G4), (G2,G2,G3,G4,G1),

(G2,G2,G3,G4,G5), (G3,G3,G4,G5,G2), (G3,G3,G4,G5,G1),

(G4,G4,G5,G1,G3), (G4,G4,G5,G1,G2), (G5,G5,G1,G2,G4),

and

(G5,G5,G1,G2,G3).

In each of the schemes to construct the blocks we take two elements fromGi and one each from

Gj, Gk, Gl as follows:

Recall a Latin squareL = [l i j ] of order, t, on {1,2, ∙ ∙ ∙ , t} is called an idempotent Latin square if

the l ii = i for i = 1,2, ∙ ∙ ∙ , t and is called a symmetric Latin square ifli j = l ji for all i, and j in

{1,2, ∙ ∙ ∙ , t}. A Latin square where rows and columns are labeled by{1,2, ∙ ∙ ∙ , t} is refered to as a

quasigroup (L,o) whereio j = l i j . Let (L,o) be an idempotent symmetric Latin square (IS LS), i.e.,

a quasigroup of order 2t + 1. Idempotent symmetric latin squares of odd orders can be obtained

by using the table for addition modulo n and renaming the entries, e.g. see ( [15], p6). We use the
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ACCEPTED MANUSCRIPT

elements ofG1 to denote the rows and columns of the three ISLS with entries from the symbols of

G2, G3, G4 respectively. Then a block is given by{ai ,aj ,bio j , cio j ,dio j} wherei < j.

It can be seen easily that (ai ,bi) type pairs occur 3t times, (ai ,bj), for i , j occurs three times and

(ai ,aj), for i , j occur two times directly from the schemes. Fort = 1, the PBIBD thus constructed

gives the GDD R150. This construction gives the solution that maintains the intersection pattern.

4 Intersection pattern (1,1,3)

Clatworthy listed only one design in this class, namelyR159. We give two genralizations ofR159.

4.1 First generalization of R159

The construction of R159 given in Clatworthy can be better understood when we consider V asZ7×

Z5 and observe that the design is obtained by developing two difference sets{(1,0), (2,0), (4,0), (0,1), (0,4)}

and{(1,0), (2,0), (4,0), (0,2), (0,3)}. Hence we have an immediate generalization fork = 2t + 1 in

the following theorem:

Theorem 6 If for no nonzero element a, elements a and−a both are in the difference set D for a

cyclic BIBD(2k+ 1, k, λ = k−1
2 ), then a GDD(2k+ 1,5, k+ 2;k− 1,1) exists with difference family

solutions(D × {0}) ∪ {(0,1), (0,4)} and(D × {0}) ∪ {(0,2), (0,3)}

The above theorem withk = 3 givesR159.

Example 3 It is known that a BIBD(11,5,2)exists with difference set{1,3,4,5,9}, hence a GDD(11,5,7; 4,1)

exists.

4.2 Second generalization of R159

This generalization of R159 is for anym= 2s+ 1:

10
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Theorem 7 A GDD(7,2s+ 1,5; 2s,1) always exists.

Observe that{(1,0), (2,0), (4,0), (0,1), (0,2s)},

{(1,0), (2,0), (4,0), (0,2), (0,2s−1)}, ∙ ∙ ∙ , {(1,0), (2,0), (4,0), (0, s−1), (0, s+2)}, {(1,0), (2,0), (4,0), (0, s), (0, s+

1)} is the required difference family on groups{i} × Z2s+1 for i = 0,1, ∙ ∙ ∙ ,6. As an example when

s= 2, the difference family produces the two difference sets for R159 as given in the beginning of

this subsection.

5 Intersection pattern (1,2,2)

Clatworthy listed four designs in this class.

5.1 Generalization of R139

The GDD(2,5,5,4,2) solution given as R139 can not be generalized to a family of GDD(n,5,5,4,2)

with block intersection pattern (1,2,2) . This is due to following necessary parametric relationship:

Recall that fork = 5, a block contributes ten pairs of elements. Sayf pairs are first associates

and (10− f ) are second associates. This will lead to a linear equation

λ1(n−1)
f =

λ2n(m−1)
(10− f ) , for a fixedm, λ1 andλ2.

This equation will be satisfied by a unique set of parameters. Thus we generalizeR139 as in the

following theorem.

Theorem 8 There exists a GDD(2t,5,5; 4t,2(2t − 1)) for all positive integers t.

We create blocks of size 5 using each of the schemes given below:

(G1,G2,G4), (G1,G3,G5), (G2,G5,G3), (G3,G4,G2), (G4,G5,G1).

Using a scheme, say (G1,G2,G4), means the following:

11
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• Let E1,E2, ∙ ∙ ∙ ,E2t−1 be a 1-factorization of aK2t onG1.

• Let F1, F2, ∙ ∙ ∙ , F2t−1 be a 1-factorization of aK2t onG2.

• Combine fora = 1,2, ∙ ∙ ∙ ,2t − 1, 1-factorsEa = {e0,e1, ∙ ∙ ∙ ,et−1} with Fa={ f0, f1, ∙ ∙ ∙ , ft−1}

to construct a collectionXj
a = {ei ∪ fi+ j : i = 0,1, ∙ ∙ ∙ , t − 1}, j = 0,1, ∙ ∙ ∙ , t − 1 of sets of size

4. The subscripti + j is evaluated modulot.

• Let G4 = {d0,d1, ∙ ∙ ∙ ,d2t−1}.

• Append elementsd2 j to each of the 4-set inXj
a to construct blocks of size 5 of the required

GDD for j = 0,1, ∙ ∙ ∙ , t − 1.

• Also appendd2 j+1 to each of the 4-set inXj
a to construct blocks of size 5 of the required GDD

for j = 0,1, ∙ ∙ ∙ , t − 1.

One can check that we have the required GDD after all the schemes are used. It can be done by

observing that each group is coming as first or second coordinate of the scheme twice and hence

each edge ofK2t on a group, meaning each pair of distinct elements of the group occurs 4t times.

This is because each edge is in one of the 1-factors, for examplee1, is in a set of size 4 inXj
a for

j = 0,1, ∙ ∙ ∙ , t − 1. When appended withd2 j and withd2 j+1 it occures 2t times. Simliarly it occurs

2t times through the second scheme. That resultsλ1 = 4t.

To observe thatλ2 is 2(2t − 1), we have to observe that the pairs from distinct groups may arise in

two ways. For example, two groups are together once in the first and second coordinates or two

groups occur together in a scheme twice, one of the two group in first or second coordinate and

the other group in the third coordinate of a scheme. For example, a pair of groupsG1 andG2 and a

pair of groupsG1 andG4. Similarly one can check that the number of blocks is 10t2(2t − 1). The

designs thus obtained, maintain the intersection pattern. In the above generalization,t = 1 gives

R139.
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Example 4 Theorem 8 for t= 2 gives a GDD(4,5,5; 8,6). Its blocks can be written according

to the group schemes given in the proof of Theorem 8 . Below we are reproducing the first 24

blocks of GDD (4,5,5;8,6) using the scheme(G1,G2,G4). The rest of the blocks can be generated

symmetrically according to the schemes given on the groups in the theorem. Note that, unlike

Clatworthy’s convention, here the groups are Gi+1 = {(4i + j + 1)|i = 0,1,2,3,4; j = 0,1,2,3}.

1 3 1 3 1 3 1 3 1 2 1 2 1 2 1 2
2 4 2 4 2 4 2 4 3 4 3 4 3 4 3 4
5 7 7 5 5 7 7 5 5 6 6 5 5 6 6 5
6 8 8 6 6 8 8 6 7 8 8 7 7 8 8 7
13 13 14 14 15 15 16 16 13 13 14 14 15 15 16 16

1 2 1 2 1 2 1 2
4 3 4 3 4 3 4 3
5 6 6 5 5 6 6 5
8 7 7 8 8 7 7 8
13 13 14 14 15 15 16 16

6 Intersection pattern (1,4)

An obvious necessary condition for a GDD with intersection pattern (1,4) is that

n ≥ 4. (6.1)

Another condition comes from observing that if a GDD(n,m, k; λ1, λ2) of type (1,4) exists, then

the intersection of blocks containing all first associate pairs of a groupG with the groupG gives a

a BIBD(n, k− 1, λ1) onG. In other words:

Theorem 9 A necessary condition for a GDD(n,m, k; λ1, λ2) to exist with intersection pattern

(1, k− 1) is the existence of a BIBD(n, k− 1, λ1).

Also as allb blocks are of type (1,4), each block contains six first associate pairs and four

second associate pairs of elements. Thus the total number of the first associate pairs in the whole

13
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design is 6b and total number of the second associate pairs is 4b. Hence 6b = m
(
n
2

)
λ1 and 4b =

(
m
2

)
n2λ2 lead to a necessary condition

λ1 =
3(m− 1)nλ2

2(n− 1)
(6.2)

The next necessary condition arises from the replication number, as

r =
(n− 1)λ1 + (m− 1)nλ2

k− 1
=

((n− 1)λ1 + (m− 1)nλ2)
4

(6.3)

equivalently we have

((n− 1)λ1 + (m− 1)nλ2) ≡ 0 (mod 4).

Clatworthy listed five designs in this class: R133, R135, R143, R146 and R152. Also R135 is a

multiple of R133 and R146 is a multiple of R143. Thus we generalize only three designs namely

R133, R143 and R152.

6.1 Generalization of R133

Taken copies of an existing BIBD(n,4, λ). For such a design the replication numberr =
λ(n−1)

3 .To

each block of a copy BIBD(n,4, λ) on the elements ofG1, add an element from the second

groupG2. Repeat this by switching the roles ofG1 andG2. These blocks so constructed give

a GDD(n,2,5;nλ, 2λ(n−1)
3 ).

For n = 4, BIBD is a single block withλ = 1 and we get R133. In general forn ≡ 1 (mod 3),

n−1
3 must divideλ2. Taking multiple copies of R133, the necessary conditions are sufficient for the

existence of GDD(4,2,5,4λ2, λ2). Further this construction maintains the pattern (1,4).

6.2 Generalization of R143

As in the case of R133, the necessary conditions are sufficient for the existence of GDD(4,3,5,4λ2, λ2)

as well. This family of GDDs can be constructed as follows: Let the groups beG1, G2, G3. Take

14
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4λ2 copies ofGi and adjoin each element of the groupGi+1, λ2 times, for i = 1,2,3 where the

subscripts are evaluated using mod 3.

Further consider Equation 6.2 whenλ2 = (n− 1)t for some positive integert. In this situation

family of GDDs of interest is GDD(n,3,5, λ1 = 3nt, λ2 = (n − 1)t) as this GDD also generalizes

R143 from Clatworthy table, as whenn = 4, we haveλ2 = 3t andλ1 = 4λ2 = 12t. . The family

can be constructed as follows: It is known that forn ≡ 0,1 (mod 4), a BIBD(n,4,3) exists([3],

p127). Taken copies of a BIBD(n,4,3) on n elements of groupGi and append an element of

groupGi+1 and as the replication number isn − 1, we will haveλ2 = n − 1. Taking t copies

of such a GDD will give the family GDD(n,3,5; 3nt, (n − 1)t), for n ≡ 0,1 (mod 4). Further It

is known that BIBD(n,4,6) exist for alln, and hence we can use the same method to construct

GDD(n,3,5; 6nt′,2(n− 1)t′) for all t = 2t′.

6.3 Generalization of R152

The construction ofR152, i.e., of GDD

(4,5,5; 8,1), can be generalized to GDD(4,2s+ 1,5; 4s,1) of type (1,4) for any positive integers.

The resulting GDD is also 5-resolvable as isR152, withb = 4s(2s+1), r = 5s, k = 5, λ1 = 4s, λ2 =

1. The groups areGi = {i,m+ i,2m+ i,3m+ i} for i = 1,2, ..., 2s+ 1 The blocks are obtained by

cyclically developing the 4s initial blocks as in R152:{1,m+1,2m+1,3m+1, x}, wherex belongs

to G2 ∪G3 ∪ ∙ ∙ ∙ ∪Gs+1. Cycles are of length (2s+ 1) cycling within the four subsets of elements

{1,2,3, ∙ ∙ ∙ ,2s+1}, {m+1,m+2,m+3, ∙ ∙ ∙ ,m+2s+1}, {2m+1,2m+2,2m+3, ∙ ∙ ∙ ,2m+2s+1},

{3m + 1,3m + 2,3m + 3, ∙ ∙ ∙ ,3m + 2s + 1}. This construction gives a solution that ratains the

intersection type (1,4). Puttings = 2 in this series gives R152. The construction maintains the

(1,4) pattern.

For intersection pattern(1,4), m = 4 is an interesting case. We notice that Clatworthy has
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not lised any GDDs with intersection pattern of (1,4) wherem = 4. We are explore this case as

follows:

6.4 The case of m=4

With the number of groups 4 and intersection pattern (1,4), the necessary condition reduces to

λ1 =
9nλ2

2(n− 1)
. (6.4)

Hence a GDD with 4 groups must be a GDD(n,4,5; 9nλ2
2(n−1), λ2) with r = 15nλ2

8 , if exists. Since

r ≥ 15, Clatworthy may not have listed any design of type (1,4) with m= 4. On the other hand we

will show non-existence of a family of GDDs with intersection pattern (1,4) and 4 groups.

Forλ2 = 2, a GDD(4,4,5; 12,2) exists on groupsGi, i = 1,2,3,4. The set of elementsV = ∪Gi

with the collection of blocksGi ∪ { j} ∀ j ∈ V −Gi, i = 1,2,3 and 4.

The above GDD is not a multiple of GDD(4,4,5; 6,1) because GDD(4,

4,5; 6,1) does not exist as the necessary condition (6.4) is not satisfied.

Let λ2 = 2, thenλ1 = 9n
(n−1), hencen − 1 must divide 9. Therefore possible values ofn are

n = 2,4 and 10. Now we are interested in the intersection pattern of (1,4) thereforen ≥ 4, hencen

can not be 2. Forn = 10, necessary conditions are neither satisfied for GDD(10,4,5; 5,1) and nor

for GDD(10,4,5; 10,2). This is in contrast with the case of GDD(4,4,5; 6,1) where the necessary

conditions are not satisfied but GDD(4,4,5; 12,2) exists.

Theorem 10 A GDD(n,4,5; 9n
n−1,2) with intersection pattern(1,4) does not exists except for n= 4

when GDD(4,4,5; 12,2) exists.

Forλ2 = 2(n−1), a series of GDD(n,4,5; 9n,2(n−1)) can be constructed. Forn = 4, the design is

three copies of the GDD(4,4,5; 12,2). Using the necessary condition (n−1)λ1+3nλ2 ≡ 0 (mod 4)

, we have 9n(n− 1)+ 6n(n− 1) ≡ 0 (mod 4), i.e., 9n2 − 9n+ 6n2 − 6n ≡ 0 (mod 4), i.e.,n ≡ 0,1

(mod 4). It is known that orn ≡ 0,1 (mod 4), BIBD(n,4,3) exists ([3], p127) with the replication
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numbern − 1. Use 3n copies of BIBD(n,4,3) on each group with 3n elements of the other three

groups to create blocks of size five of the required GDD. Hence we have

Theorem 11 Necessary conditions are sufficient for the existence of a GDD(n,4,5; 9tn,2t(n− 1))

for all positive integer values of t.

7 Intersection pattern (2,3)

7.1 Generalization of R137

Theorem 12 A GDD(6t + 3,3,5; 8t + 4,6t + 2) exists for all integers t≥ 0

Start with a RBIBD(6t+3,3,1), sayD, which is known to exist for all non negative integerst ([3],

p127).D has 3t + 1 parallel classes, sayπ1, π2, ∙ ∙ ∙ , π3t+1. So first considerD onG1 and aK6t+3 on

G2. Recall thatK6t+3 has 3t + 1 two-factors, sayT1,T2, ∙ ∙ ∙ ,T3t+1. Take union of each triple/block

of π j with each edge ofTj for j = 1,2, ∙ ∙ ∙ 3t + 1 to create blocks of the required GDD of size 5.

We repeat the same procedure withG2 andG3 andG3 andG1. It is is easy to countλ1 as we are

repeating each triple/block of RBIBD(6t+3,3,1), 6t+3 times as 6t+3 is the number of edges in a

two-factor and we are also using aK6t+3: note that each edge ofK6t+3 will be appended with 2t + 1

triples/blocks of a parallel class. Henceλ1 = 6t + 3+ 2t + 1 = 8t + 4. Counting ofλ2 can be done

in a similar fashion. The degree of a vertex inK6t+3 is 6t + 2, so an edge containing say an element

a of a groupG1, will be appended with the triples of 6t + 2 parallel classes of the BIBD onG2 and

henceλ2 = 6t + 2. In the above theoremt = 0 gives a GDD R137.

7.2 Generalization of R149

Theorem 13 A family of GDD with parameters(6t + 3,5,5,8(2t + 1),2(3t + 1)) exists for positive

integers t≥ 0.
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Considern ≡ 3 (mod 6), equivalently letn = 6t+3 for some positive integert. The set of blocks of

the required GDD is union of the set of blocks constructed on the following pairs of the five groups:

(G1,G2), (G1,G3), (G4,G1), (G5,G1), (G2,G3), (G2,G4), (G5,G2), (G3,G4), (G3,G5), (G4,G5) as

follows. Given a pair (Gi ,Gj) of groups, we construct blocks of size 5, by attaching each pair of

Gj with all triples of a parallel class of a RBIBD(6t + 3,3,6t + 3) onGi.

One can check thatλ1 = 8(2t + 1) by observing that in the ordered pairs ofG′i s above, each group

occurs twice as the first entry and twice as the second entry. When a group, sayGi is the first

entry, its pairs of distinct elements occur in the blocks of RBIBD(6t+3,3,6t+3), hence contribute

2(6t+3) towards the count ofλ1. Now each parallel class of the RBIBD(6t+3,3,6t+3) has 2t+1

triples/blocks, therefore any pair of distinct elements ofGi occurs altogether in 2(2t + 1) blocks

whenGi is the second entry. Thereforeλ1 = 2(6t + 3)+ 2(2t + 1) = 8(2t + 1).

To countλ2, observe that any two groups, (Gi ,Gj) are together in only one ordered pair. Letx

be an element ofGj and lety be an element ofGi. There are 6t + 2 pairs of elements ofGj

containingx. Each pair is attached with all blocks of a parallel class which contain all elements of

Gi, in particulary, exactly once and hence the pair (x, y) occurs in the blocks of the required GDD

exactly (6t + 2) = 2(3t + 1) = λ2 times. This construction maintains the pattern (2,3). Fort = 0

we get GDD R149.

8 Intersection pattern Mixed type

Here is a generalization of R141:

8.1 Generalization of R141

There are two non-isomorphic solutions with parameter GDD(5,2,5;5,4) in Clatworthy [2]. We

generalize the first solution as follows:

Generalization of the first solution: First if a BIBD(2v, v, λ) exists, then a GDD(v,2, v; λ + t, λ)
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exists. The blocks of the GDD are the blocks of BIBD together with t copies of a partition of 2v

elements in two sets of sizev: these two sets play the role of the groups. In fact, more generally, if

a BIBD(uv, v, λ) exists, then a GDD(u, v, v; λ + t, λ) exists.

We can generalize R141 in another way where the GDDs produced have block size 5. Suppose

a BIBD(5t,5, λ) exists, then a GDD(5, t,5, λ + s, λ) exists, by using partition of 5t elements into t

groups of size five, the blcoks of the GDD are blocks of the BIBD ands copies of the groups as

blocks.

8.2 Generalization of R155 , R156, R157, R158

These designs are from the same family. The construction is as follows: Take the blocks of

RBIBD(25,5,1) together withλ1 − 1 copies of a parallel class of blocks.

Theorem 14 If a RBIBD(v = mk, k, λ) exists, then a GDD(k,m, k; λ + t, λ) exists.
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Table 1: Intersection pattern (1,1,1,1,1)
Design v r b m n λ1 λ2 Comment
SR52 10 4 8 5 2 0 2 Remark2
SR53 10 6 12 5 2 0 3 Remark2
SR54 10 8 16 5 2 0 4 2 solutions, duplicate ofSR52
SR55 10 10 20 5 2 0 5 Remark2
SR56 15 6 18 5 3 0 2 Remark2
SR57 15 9 27 5 3 0 3 Remark2
SR58 20 4 16 5 4 0 1 Remark2
SR59 20 8 32 5 4 0 2 2 solutions, duplicate SR58, Remark2
SR60 25 5 25 5 5 0 1 Remark2
SR61 25 10 50 5 5 0 2 Duplicate of SR60 Remark2
SR62 35 7 49 5 7 0 1 Remark2
SR63 40 8 64 5 8 0 1 Remark2
SR64 45 9 81 5 9 0 1 Remark2
R144 12 5 12 6 2 0 2 m> 5
R147 12 10 24 6 2 0 4 Duplicate ofR144
R153 24 5 24 6 4 0 1 m> 5
R154 24 10 48 6 4 0 2 Duplicate ofR153
R161 40 9 72 10 4 0 1 m> 5
R162 44 10 88 11 4 0 1 m> 5
R163 45 10 90 9 5 0 1 m> 5
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Table 2: Intersection pattern (1,1,1,2)
Design v r b m n λ1 λ2 Comment
R134 8 5 8 4 2 2 3 Generalized in Section3.1
R136 8 10 16 4 2 4 6 Duplicate ofR134
R145 12 5 12 4 3 1 2 Generalized in[16]
R148 12 10 24 4 3 2 4 Duplicate ofR145
R150 15 10 30 5 3 2 3 Generalized in Section3.2
R160 39 10 78 13 3 2 1 m> 5
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Table 3: Intersection pattern (1,1,3)
Design v r b m n λ1 λ2 Comment
R159 35 10 70 5 7 2 1 Generalized in Sections 4.1,4.2
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Table 4: Intersection pattern (1,2,2)
Design v r b m n λ1 λ2 Comment
R138 9 10 18 3 3 8 4 Duplicate ofR137
R139 10 5 10 5 2 4 2 Generalized in Section5.1
R142 10 10 20 5 2 8 4 Duplicate ofR139
R151 18 10 36 9 2 8 2 m> 5
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Table 5: Intersection pattern (1,4)
Design v r b m n λ1 λ2 Comment
R133 8 5 8 2 4 4 2 Generalized in Section6.1
R135 8 10 16 2 4 8 4 Duplicate ofR133
R143 12 5 12 3 4 4 1 Generalized in Section6.2
R146 12 10 24 3 4 8 2 Duplicate ofR143
R152 20 10 40 5 4 8 1 Generalized in Section6.3

26
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

R
M

IT
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
8:

10
 0

3 
D

ec
em

be
r 

20
17
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Table 6: Intersection pattern (2,3)
Design v r b m n λ1 λ2 Comment
R137 9 5 9 3 3 4 2 Generalized in Section7.1
R138 9 10 18 3 3 8 4 Duplicate ofR137
R149 15 10 30 5 3 8 2 Generalized in Section7.2
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Table 7: Intersection pattern mixed type
Design v r b m n λ1 λ2 Comment
R140 10 7 14 5 2 4 3 Open
R141 10 10 20 2 5 5 4 Generalized in Section8.1
R155 25 7 35 5 5 2 1 Generalized in Section8.2
R156 25 8 40 5 5 3 1 Generalized in Section8.2
R157 25 9 45 5 5 4 1 Generalized in Section8.2
R158 25 10 50 5 5 5 1 Generalized in Section8.2

28
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

R
M

IT
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
8:

10
 0

3 
D

ec
em

be
r 

20
17

 


