Show simple item record

dc.contributor.authorNamyalo, Kasifa
dc.date.accessioned2021-11-24T13:51:17Z
dc.date.available2021-11-24T13:51:17Z
dc.date.issued2021
dc.identifier.citationNamyalo Kasifa.(2021), "Group Divisible Design (n1, n2, n3,4; λ1, λ2), for n1 = 3,n2 = n and n3 = n + 1." IOSR Journal of Mathematics (IOSR-JM), 17(3), (2021): pp. 18-21.en_US
dc.identifier.urihttp://ir.must.ac.ug/xmlui/handle/123456789/996
dc.description.abstractThe work in this article is about Group Divisible Designs (GDDs) with three groups of sizes n1, n2 and n3, where n1=3, n2=n and n3=n+1 and block size four. First, we establish necessary conditions for the existence of GDD(3,n,n + 1,4;λ1,λ2): for n1=3,n2=n and n3=n+1. Necessary conditions include an inequality .Then we prove that these conditions are sufficient for several families of GDDs. We give an example where parameters satisfy all the necessary conditions including the inequality but the GDD does not exist.en_US
dc.language.isoen_USen_US
dc.publisherIOSR Journal of Mathematics (IOSR-JM)en_US
dc.subjectGroup divisible designs (GDDs)en_US
dc.subjectBalanced incomplete block designs (BIBDs)en_US
dc.subjecta Designen_US
dc.titleGroup Divisible Design (n1, n2, n3,4; λ1, λ2), for n1 = 3,n2 = n and n3 = n + 1en_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record