Countably categorical coloured linear orders

dc.contributor.authorMwesigye, Feresiano
dc.contributor.authorTruss, John K.
dc.date.accessioned2021-05-03T09:21:49Z
dc.date.available2021-05-03T09:21:49Z
dc.date.issued2010-03-18
dc.description.abstractIn this paper, we give a classification of (finite or countable) ℵ0-categorical colored linear orders, generalizing Rosenstein’s characterization of ℵ0-categorical linear orderings. We show that they can all be built from colored singletons by concatenation and Qn-combinations (for n ≥ 1). We give a method using coding trees to describe all structures in our list.en_US
dc.identifier.citationMwesigye, F., & Truss, J. K. (2010). Countably categorical coloured linear orders. Mathematical Logic Quarterly, 56(2), 159-163.en_US
dc.identifier.urihttp://ir.must.ac.ug/handle/123456789/744
dc.language.isoen_USen_US
dc.publisherMath. Log. Quarten_US
dc.subjectCoding treeen_US
dc.subjectcoloursen_US
dc.subjectcoloured linear orderingsen_US
dc.subjectclassificationen_US
dc.subjectℵ0-categorical linear orderingsen_US
dc.titleCountably categorical coloured linear ordersen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Countably categorical coloured linear orders_MATHS.pdf
Size:
106.73 KB
Format:
Adobe Portable Document Format
Description:
Main article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: