Classification of Finite Coloured Linear Orderings

dc.contributor.authorMwesigye, Feresiano
dc.contributor.authorTruss, John Kenneth
dc.date.accessioned2021-05-03T09:10:57Z
dc.date.available2021-05-03T09:10:57Z
dc.date.issued2010-09-07
dc.description.abstractThis paper concerns the classification of finite coloured linear orders up to n-equivalence. Ehrenfeucht–Fraïssé games are used to define what this means, and also to help analyze such structures. We give an explicit bound for the least number g(m, n) such that any finite m-coloured linear order is n-equivalent to some orderingof size ≤ g(m, n), from which it follows that g is computable. We give exact values for g(m, 1) and g(m, 2). The method of characters is developed and used.en_US
dc.identifier.citationMwesigye, F., & Truss, J. K. (2011). Classification of finite coloured linear orderings. Order, 28(3), 387-397.en_US
dc.identifier.urihttp://ir.must.ac.ug/handle/123456789/743
dc.language.isoen_USen_US
dc.publisherOrderen_US
dc.subjectColoursen_US
dc.subjectClassificationen_US
dc.subjectColoured linear orderingsen_US
dc.titleClassification of Finite Coloured Linear Orderingsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Classification of Finite Coloured Linear Orderings_MATHS.pdf
Size:
280.54 KB
Format:
Adobe Portable Document Format
Description:
Main article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: