On estimates for the number of negative eigenvalues of two-dimensional Schrodinger operators with potentials supported by Lipschitz curves

dc.contributor.authorKaruhanga, martin
dc.date.accessioned2021-05-04T08:12:51Z
dc.date.available2021-05-04T08:12:51Z
dc.date.issued2017-08
dc.description.abstractIn this paper we present quantitative upper estimates for the number of negative eigenvalues of a two-dimensional Schrodinger operator with potential supported by an unbounded Lipschitz curve. The estimates are given in terms of weighted L 1 and Llog L type Orlicz norms of the potential AAen_US
dc.identifier.urihttp://ir.must.ac.ug/handle/123456789/757
dc.language.isoen_USen_US
dc.subjectNegative eigenvaluesen_US
dc.subjectSchrodinger operatorsen_US
dc.subjectLipschitz curvesen_US
dc.titleOn estimates for the number of negative eigenvalues of two-dimensional Schrodinger operators with potentials supported by Lipschitz curvesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On estimates for the number of negative eugenvalues_MATHS.pdf
Size:
331.71 KB
Format:
Adobe Portable Document Format
Description:
Main article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: