On negative eigenvalues of two-dimensional Schrödinger operators with singular potentials

dc.contributor.authorKaruhanga, Martin
dc.date.accessioned2021-05-04T11:54:21Z
dc.date.available2021-05-04T11:54:21Z
dc.date.issued2020-05-20
dc.description.abstractWe present upper estimates for the number of negative eigenvalues of two-dimensional Schrodinger operators with potentials generated by Ahlfors regular measures of arbitrary fractional dimension α ∈ (0, 2]. The estimates are given in terms of integrals of the potential with a logarithmic weight and of its L log L type Orlicz norms. In the case α = 1, our results are stronger than the known ones about Schrodinger operators with potentials supported by Lipschitz curves.en_US
dc.identifier.citationKaruhanga, M., & Shargorodsky, E. (2020). On negative eigenvalues of two-dimensional Schrödinger operators with singular potentials. Journal of Mathematical Physics, 61(5), 051509.en_US
dc.identifier.urihttp://ir.must.ac.ug/handle/123456789/758
dc.language.isoen_USen_US
dc.publisherJournal of Mathematical Physicsen_US
dc.subjectnegative eigenvaluesen_US
dc.subjecttwo-dimensional Schrödinger operatorsen_US
dc.subjectarbitraryen_US
dc.subjectLipschitz curvesen_US
dc.titleOn negative eigenvalues of two-dimensional Schrödinger operators with singular potentialsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On negative eigenvalues of twodimensional dimentional_MATHS.pdf
Size:
4.78 MB
Format:
Adobe Portable Document Format
Description:
Main article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: