Show simple item record

dc.contributor.authorKassaza, Kennedy
dc.contributor.authorOperario, Darwin J.
dc.contributor.authorNyehangane, Dan
dc.contributor.authorCoffey, K. C.
dc.contributor.authorNamugosa, Mary
dc.contributor.authorTurkheimer, Lena
dc.contributor.authorOjuka, Patrick
dc.contributor.authorOrikiriza, Patrick
dc.contributor.authorAmumpaire, Juliet Mwanga
dc.contributor.authorByarugaba, Frederick
dc.contributor.authorBazira, Joel
dc.contributor.authorGuler, Jennifer L
dc.contributor.authorMoore, Christopher C.
dc.contributor.authorBoum, Yap
dc.date.accessioned2022-02-03T08:22:08Z
dc.date.available2022-02-03T08:22:08Z
dc.date.issued2017-10-02
dc.identifier.citationKassaza, K., Operario, D. J., Nyehangane, D., Coffey, K. C., Namugosa, M., Turkheimer, L., ... & Boum, Y. (2018). Detection of Plasmodium species by high-resolution melt analysis of DNA from blood smears acquired in Southwestern Uganda. Journal of Clinical Microbiology, 56(1), e01060-17.en_US
dc.identifier.urihttp://ir.must.ac.ug/xmlui/handle/123456789/1378
dc.description.abstractMicroscopic diagnosis of malaria using Giemsa-stained blood smears is the standard of care in resource-limited settings. These smears represent a potential source of DNA for PCR testing to confirm Plasmodium infections or for epidemiological studies of archived samples. Therefore, we assessed the use of DNA extracts from stained blood smears for the detection of Plasmodium species using real-time PCR.We extracted DNA from archived blood smears and corresponding red blood cell pellets collected from asymptomatic children in southwestern Uganda in 2010. We then performed real-time PCR followed by high-resolution melting (HRM) to identify Plasmodium species, and we compared our results to those of microscopy. We analyzed a total of 367 blood smears and corresponding red blood cell pellets, including 185 smears (50.4%) that were positive by microscopy. Compared to microscopy,PCR-HRM analysis of smear DNA had a sensitivity of 93.0% (95% confidence interval [CI], 88.2 to 96.2%) and a specificity of 96.7% (95% CI, 93.0 to 98.8%), and PCR-HRM analysis of pellet DNA had a sensitivity of 100.0% (95% CI, 98.0 to 100.0%) and a specificity of 94.0% (95% CI, 89.4 to 96.9%). Identification of positive PCR-HRM results to the species level revealed Plasmodium falciparum (92.0%), Plasmodium ovale (5.6%), and Plasmodium malariae (2.4%). PCR-HRM analysis of DNA extracts from Giemsa-stained thick blood smears or corresponding blood pellets had high sensitivity and specificity for malaria diagnosis, compared to microscopy. Therefore, blood smears can provide an adequate source of DNA for confirmation of Plasmodium species infections and can be used for retrospective genetic studies.en_US
dc.description.sponsorshipUniversity of Virginia Henry Rose Carter Foundation Award to support this work. K.C.C., M.N., and L.T. all received University of Virginia Center for Global Health scholarships to participate in this study. K.K. received support from the Uganda Research Student Support Fund at the Epicenter Mbarara Research Center.en_US
dc.language.isoen_USen_US
dc.publisherJournal of Clinical Microbiologyen_US
dc.subjectDiagnosticsen_US
dc.subjectHigh-resolution meltingen_US
dc.subjectMalariaen_US
dc.subjectPCRen_US
dc.titleDetection of Plasmodium Species by High-Resolution Melt Analysis of DNA from Blood Smears Acquired in Southwestern Ugandaen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record